The ER is a central element in Ca(2+) signaling, both as a modulator of cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) and as a locus of Ca(2+)-regulated events. During surface membrane depolarization in excitable cells, the ER may either accumulate or release net Ca(2+), but the conditions of stimulation that determine which form of net Ca(2+) transport occurs are not well understood. The direction of net ER Ca(2+) transport depends on the relative rates of Ca(2+) uptake and release via distinct pathways that are differentially regulated by Ca(2+), so we investigated these rates and their sensitivity to Ca(2+) using sympathetic neurons as model cells. The rate of Ca(2+) uptake by SERCAs (J(SERCA)), measured as the t-BuBHQ-sensitive component of the total cytoplasmic Ca(2+) flux, increased monotonically with [Ca(2+)](i). Measurement of the rate of Ca(2+) release (J(Release)) during t-BuBHQ-induced [Ca(2+)](i) transients made it possible to characterize the Ca(2+) permeability of the ER ((~)P(ER)), describing the activity of all Ca(2+)-permeable channels that contribute to passive ER Ca(2+) release, including ryanodine-sensitive Ca(2+) release channels (RyRs) that are responsible for CICR. Simulations based on experimentally determined descriptions of J(SERCA), and of Ca(2+) extrusion across the plasma membrane (J(pm)) accounted for our previous finding that during weak depolarization, the ER accumulates Ca(2+), but at a rate that is attenuated by activation of a CICR pathway operating in parallel with SERCAs to regulate net ER Ca(2+) transport. Caffeine greatly increased the [Ca(2+)] sensitivity of ((~)P(ER)), accounting for the effects of caffeine on depolarization-evoked [Ca(2+)](i) elevations and caffeine-induced [Ca(2+)](i) oscillations. Extending the rate descriptions of J(SERCA), ((~)P(ER)), and J(pm) to higher [Ca(2+)](i) levels shows how the interplay between Ca(2+) transport systems with different Ca(2+) sensitivities accounts for the different modes of CICR over different ranges of [Ca(2+)](i) during stimulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2217286PMC
http://dx.doi.org/10.1085/jgp.20028484DOI Listing

Publication Analysis

Top Keywords

ca2+
21
ca2+ release
16
net ca2+
16
ca2+ transport
16
ca2+ uptake
12
uptake release
8
cytoplasmic ca2+
8
rate ca2+
8
descriptions jserca
8
release
7

Similar Publications

Intracellular metal ion-based chemistry for programmed cell death.

Chem Soc Rev

January 2025

Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.

Intracellular metal ions play essential roles in multiple physiological processes, including catalytic action, diverse cellular processes, intracellular signaling, and electron transfer. It is crucial to maintain intracellular metal ion homeostasis which is achieved by the subtle balance of storage and release of metal ions intracellularly along with the influx and efflux of metal ions at the interface of the cell membrane. Dysregulation of intracellular metal ions has been identified as a key mechanism in triggering programmed cell death (PCD).

View Article and Find Full Text PDF

Endothelial dysfunction, characterized by a decline in endothelial physiological functions, is a significant aspect of cardiovascular aging, contributing notably to arterial stiffness, atherosclerosis, and hypertension. Transient receptor potential channel V4 (TRPV4), a key member of Ca-permeable channels, plays a crucial role in maintaining vascular functions. However, the role and mechanisms of TRPV4 in aging-related endothelial dysfunction remain incompletely understood.

View Article and Find Full Text PDF

Slide-Ring Structured Stress-Electric Coupling Hydrogel Microspheres for Low-Loss Transduction Between Tissues.

Adv Mater

January 2025

Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.

High transductive loss at tissue injury sites impedes repair. The high dissipation characteristics in the electromechanical conversion of piezoelectric biomaterials pose a challenge. Therefore, supramolecular engineering and microfluidic technology is utilized to introduce slide-ring polyrotaxane and conductive polypyrrole to construct stress-electric coupling hydrogel microspheres.

View Article and Find Full Text PDF

A molecularly distinct cell type in the midbrain regulates intermale aggression behaviors in mice.

Theranostics

January 2025

Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

: The periaqueductal gray (PAG) is a central hub for the regulation of aggression, whereas the circuitry and molecular mechanisms underlying this regulation remain uncharacterized. In this study, we investigate the role of a distinct cell type, -expressing (Tac2) neurons, located in the dorsomedial PAG (dmPAG) and their modulation of aggressive behavior in mice. : We combined activity mapping, Ca recording, chemogenetic and pharmacological manipulation, and a viral-based translating ribosome affinity purification (TRAP) profiling using a mouse resident-intruder model.

View Article and Find Full Text PDF

Ion channels, as functional molecules that regulate the flow of ions across cell membranes, have emerged as a promising target in cancer therapy due to their pivotal roles in cell proliferation, metastasis, apoptosis, drug resistance, and so on. Recently, increasing evidence suggests that dysregulation of ion channels is a common characteristic of cancer cells, contributing to their survival and the resistance to conventional therapies. For example, the aberrant expression of sodium (Na) and potassium ion (K) channels is significantly correlated with the sensitivity of chemotherapy drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!