Nuclear spin relaxation for liquid gallium embedded into nanoporous matrices was found to accelerate remarkably compared to the bulk melt. NMR measurements on two gallium isotopes showed that the dominant mechanism of relaxation was changed from magnetic to quadrupolar and the relation rate depended on the Larmor frequency. The correlation time of electric field gradient fluctuations was estimated using data for quadrupolar relaxation contribution and was found to increase drastically compared to bulk, which corresponded to slowing down mobility in confined liquid gallium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.88.097602 | DOI Listing |
Gels
November 2024
Electro-Medical Equipment Research Division, Korea Electrotechnology Research Institute (KERI), Ansan 15588, Republic of Korea.
Shape-memory materials are widely utilized in biomedical devices and tissue engineering, particularly for their ability to undergo predefined shape changes in response to external stimuli. In this study, a shape-transformable organohydrogel was developed by incorporating a gallium mesh into a polyacrylamide/alginate/glycerol matrix. The gallium mesh, which transitions between solid and liquid states at moderate temperatures (~29.
View Article and Find Full Text PDFSmall
December 2024
School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China.
Liquid metals (LMs), as an emerging group of functional materials, possess the necessary conditions for dewetting. However, LM dewetting garnered grossly inadequate attention. Here, an intriguing phenomenon termed active corrosion-triggered dewetting (ACT-Dewetting) of LMs is reported.
View Article and Find Full Text PDFAdv Mater
December 2024
Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
Liquid exfoliation is a scalable and effective method for synthesizing 2D nanosheets (NSs) but often induces contamination and defects. Here, liquid metal gallium (Ga) is used to exfoliate bulk layered materials into 2D NSs at near room temperature, utilizing the liquid surface tension and Ga intercalation to disrupt Van der Waals (vdW) forces. In addition, the process can transform the 2H-phase of transition metal dichalcogenides into the 1T'-phase under ambient conditions.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia.
This study investigates the growth of gallium arsenide nanowires, using lead as a catalyst. Typically, nanowires are grown through the vapor-solid-liquid mechanism, where a key factor is the reduction in the nucleation barrier beneath the catalyst droplet. Arsenic exhibits limited solubility in conventional catalysts; however, this research explores an alternative scenario in which lead serves as a solvent for arsenic, while gallium and lead are immiscible liquids.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Mechanical and Energy Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, United States.
Solid-state Li-ion batteries are attracting attention for their enhanced safety features, higher energy density, and broader operational temperature range compared to systems based on liquid electrolytes. However, current solid-state Li-ion batteries face performance challenges, such as suboptimal cycling and poor rate capabilities, often due to inadequate interfacial contact between the solid electrolyte and electrodes. To address this issue, we incorporated a gallium-indium (Ga-In) liquid metal as the anode in a solid-state Li-ion battery setup, employing LiPSCl as the solid electrolyte.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!