We study the effects of magnetoelastic couplings on pyrochlore antiferromagnets. We employ Landau theory, extending an investigation begun by Yamashita and Ueda for the case of S = 1, and classical analyses to argue that such couplings generate bond order via a spin-Peierls transition. This is followed by, or concurrent with, a transition into one of several possible low-temperature Néel phases, with most simply collinear, but also coplanar or mixed spin patterns. In a collinear Néel phase, a dispersionless stringlike magnon mode dominates the resulting excitation spectrum, providing a distinctive signature of the parent geometrically frustrated state. We comment on the experimental situation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.88.067203 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!