Ground states and vortices of matter-wave condensates and optical guided waves.

Phys Rev E Stat Nonlin Soft Matter Phys

Nonlinear Physics Group, Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200, Australia.

Published: February 2002

We analyze the shape and stability of localized states in nonlinear cubic media with space-dependent potentials modeling an inhomogeneity. By means of a static variational approach, we describe the ground states and vortexlike stationary solutions, either in dilute atom gases or in optical cavities, with an emphasis on parabolic-type potentials. First, we determine the existence conditions for soliton and vortex structures for both focusing and defocusing nonlinearity. It is shown that, even for a defocusing medium, soliton modes can exist with a confining potential. Second, step potentials and boundedness effects in hollow capillaries are investigated, which both proceed from a similar analysis. Finally, we discuss applications of this procedure to charged vortices in dilute quantum gases and to Bose-Einstein condensates trapped in the presence of a light-induced Gaussian barrier.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.65.026611DOI Listing

Publication Analysis

Top Keywords

ground states
8
states vortices
4
vortices matter-wave
4
matter-wave condensates
4
condensates optical
4
optical guided
4
guided waves
4
waves analyze
4
analyze shape
4
shape stability
4

Similar Publications

Background: Per- and polyfluoroalkyl substances (PFAS) comprise thousands of fluorinated chemicals. They are of growing concern because many PFAS compounds are persistent and toxic. Food contact materials (FCM) containing PFAS pose multiple exposure pathways to humans, prompting twelve states to enact laws banning FCM with PFAS levels exceeding 100 ppm of TOF.

View Article and Find Full Text PDF

Purpose: Pulmonary perfusion imaging is a key lung health indicator with clinical utility as a diagnostic and treatment planning tool. However, current nuclear medicine modalities face challenges like low spatial resolution and long acquisition times which limit clinical utility to non-emergency settings and often placing extra financial burden on the patient. This study introduces a novel deep learning approach to predict perfusion imaging from non-contrast inhale and exhale computed tomography scans (IE-CT).

View Article and Find Full Text PDF

Electron delocalization is studied in the ground singlet and first excited triplet states of azulene-containing helicenes. After showing that the compounds we study can be synthesized, we show that they exhibit a charge separation in the ground state, which does not appear in their triplet excited state. Then, magnetically induced properties (IMS3D and ACID) and electron density decomposition methods (EDDB) are used to rationalize aromaticity in these systems.

View Article and Find Full Text PDF

Electronic structure of norbornadiene and quadricyclane.

Phys Chem Chem Phys

January 2025

Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.

The ground and excited state electronic structure of the molecular photoswitches quadricyclane and norbornadiene is examined qualitatively and quantitatively. A new custom basis set is introduced, optimised for efficient yet accurate calculations. A number of advanced multi-configurational and multi-reference electronic structure methods are evaluated, identifying those sufficiently accurate and efficient to be used in on-the-fly simulations of photoexcited dynamics.

View Article and Find Full Text PDF

APPLICATIONS OF MATHEMATICAL PROGRAMMING TO GENETIC BIOCONTROL.

SIAM J Appl Math

January 2024

Division of Epidemiology and Biostatistics, School of Public Health, University of California Berkeley, Berkeley, CA 94704 USA.

We review existing approaches to optimizing the deployment of genetic biocontrol technologies-tools used to prevent vector-borne diseases such as malaria and dengue-and formulate a mathematical program that enables the incorporation of crucial ecological and logistical details. The model is comprised of equality constraints grounded in discretized dynamic population equations, inequality constraints representative of operational limitations including resource restrictions, and an objective function that jointly minimizes the count of competent mosquito vectors and the number of transgenic organisms released to mitigate them over a specified time period. We explore how nonlinear programming (NLP) and mixed integer nonlinear programming (MINLP) can advance the state of the art in designing the operational implementation of three distinct transgenic public health interventions, two of which are presently in active use around the world.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!