Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Quantum statistical mechanics has developed primarily through two approaches, pioneered by Gibbs and Feynman, respectively. In Gibbs' method one calculates partition functions from phase-space integrations or sums over stationary states. Alternatively, in Feynman's approach, the focus is on the path-integral formulation. The Hubbard-Stratonovich transformation leads to a functional-integral formulation for calculating partition functions. We outline here the functional integral approach to quantum statistical mechanics, including generalizations and improvements to Hubbard's formulation. We show how the dimensionality of the integrals is reduced exactly, how the problem of assuming an unknown canonical transformation is avoided, how the reality of the partition function in the complex representation is guaranteed, and how the extremum conditions are simplified. This formulation can be applied to general systems, including superconductors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.65.026118 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!