Werner syndrome is a rare autosomal recessive disease characterized by a premature aging phenotype, genomic instability, and a dramatically increased incidence of cancer and heart disease. Mutations in a single gene encoding a 1432-amino acid helicase/exonuclease (hWRN) have been shown to be responsible for the development of this disease. We have cloned, overexpressed, and purified a minimal, 171-amino acid fragment of hWRN that functions as an exonuclease. This fragment, encompassing residues 70-240 of hWRN (hWRN-N(70-240)), exhibits the same level of 3'-5' exonuclease activity as the previously described exonuclease fragment encompassing residues 1-333 of the full-length protein. The fragment also contains a 5'-protruding DNA strand endonuclease activity at a single-strand-double-strand DNA junction and within single-stranded DNA, as well as a 3'-5' exonuclease activity on single-stranded DNA. We find hWRN-N(70-240) is in a trimer-hexamer equilibrium in the absence of DNA when examined by gel filtration chromatography and atomic force microscopy. Upon addition of DNA substrate, hWRN-N(70-240) forms a hexamer and interacts with the recessed 3'-end of the DNA. Moreover, we find that the interaction of hWRN-N(70-240) with the replication protein PCNA also causes this minimal, 171-amino acid exonuclease region to form a hexamer. Thus, the active form of this minimal exonuclease fragment of human WRN appears to be a hexamer. The implications these results have on our understanding of hWRN's roles in DNA replication and repair are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi0157161 | DOI Listing |
Biosens Bioelectron
January 2025
Shandong Key Laboratory of Biophysics, Institute of Biophysics, Institute of Rural Revitalization, School of Pharmacy, Dezhou University, 253023, Dezhou, China. Electronic address:
This study presents a dual-mode and regenerated DNA motor powered by exonuclease III (Exo III) for the simultaneous detection of viral gene fragments. The detection methodology is categorized into two distinct operational modes. The first mode emphasizes the simultaneous detection of two viral gene fragments from a specific virus.
View Article and Find Full Text PDFLife (Basel)
November 2024
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.
DNA polymerases from the hyperthermophilic Archaea have attracted considerable attention as PCR enzymes due to their high thermal stability and proofreading 3' → 5' exonuclease activity. This study is the first to report data concerning the purification and biochemical characteristics of the Tst DNA polymerase from . Both the wild type Tst(wt) DNA polymerase and its chimeric form containing the P36H substitution-which reduces the enzyme's affinity for the U-containing template and dUTP-and the DNA-binding domain Sso7d from were obtained and analyzed.
View Article and Find Full Text PDFChem Res Toxicol
January 2025
SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, Novosibirsk 630090, Russia.
Biological polyamines, such as spermine, spermidine, and putrescine, are abundant intracellular compounds mostly bound to nucleic acids. Due to their nucleophilic nature, polyamines easily react with apurinic/apyrimidinic (AP) sites, DNA lesions that are constantly formed in DNA by spontaneous base loss and as intermediates of base excision repair. A covalent intermediate is formed, promoting DNA strand cleavage at the AP site, and is later hydrolyzed regenerating the polyamine.
View Article and Find Full Text PDFInt J Biol Macromol
February 2025
State Key Laboratory of Cellular Stress Biology, Innovation Centre for Cell Signalling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; National Institute for Data Science in Health and Medicine Engineering, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China. Electronic address:
Despite its limitations, restriction enzyme (RE)-mediated cleavage remains the prevalent method for generating sticky ends in DNA assembly. Here, we present RNase HII Fusion (RH2Fusion), a robust system for user-defined sticky ends, enabling scarless assembly of multiple DNA fragments alongside simultaneous site-directed mutagenesis (SDM) at multiple sites. In bacterial cells, DNA fragments with ribonucleotide modifications are expected to form complementary 3' overhangs after RNase HII treatment, followed by annealing and recombination via the bacterial self-repair system.
View Article and Find Full Text PDFElife
December 2024
Department of Biochemistry, Indian Institute of Science Bangalore, Bengaluru, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!