We developed a panel of lentiviral vectors that displayed tetracycline-regulated transgene expression over two orders of magnitude in bulk, non-selected populations of transduced cells in vitro and in vivo. The robust expression and homogeneous response indicated that most transduced vector genomes were transcription competent and responsive to regulation, providing the lentiviral vector with a novel competitive advantage for gene transfer. After ex vivo transduction and transplantation of cord blood CD34+ cells into NOD/SCID mice, reporter gene expression could be switched "on" and "off" in human hematopoietic cells in vivo for prolonged times, proving integration of the regulated expression system into long-term repopulating cells. By vector injection into established tumor grafts, we achieved efficient delivery and quantitative regulation of transgene expression in vivo. By these approaches, gene function studies can now be performed in in vivo models of human hematopoiesis and cancer. In the future, regulated lentiviral vectors will improve the safety and efficacy of gene therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1006/mthe.2002.0542DOI Listing

Publication Analysis

Top Keywords

transgene expression
12
lentiviral vectors
12
regulation transgene
8
expression vivo
8
expression
6
vivo
6
robust efficient
4
efficient regulation
4
vivo improved
4
improved tetracycline-dependent
4

Similar Publications

Malic acid markedly affects watermelon flavor. Reducing the malic acid content can significantly increase the sweetness of watermelon. An effective solution strategy is to reduce watermelon malic acid content through molecular breeding technology.

View Article and Find Full Text PDF

Neuroinflammation and mitochondrial dysfunction are early events in Alzheimer's disease (AD) and contribute to neurodegeneration and cognitive impairment. Evidence suggests that the inflammatory axis mediated by macrophage migration inhibitory factor (MIF) binding to its receptor, CD74, plays an important role in many central nervous system (CNS) disorders such as AD. Our group has developed DRhQ, a novel CD74 binding construct which competitively inhibits MIF binding, blocks macrophage activation and migration into the CNS, enhances anti-inflammatory microglia cell numbers and reduces pro-inflammatory gene expression.

View Article and Find Full Text PDF

Transgenic mice and organoid models, such as three-dimensional tumoroid cultures, have emerged as powerful tools for investigating cancer development and targeted therapies. Yet, the extent to which these preclinical models recapitulate the cellular identity of heterogeneous malignancies, like neuroblastoma (NB), remains to be validated. Here, we characterized the transcriptional landscape of TH-MYCN tumors by single-cell RNA sequencing (scRNA-seq) and developed ex vivo tumoroids.

View Article and Find Full Text PDF

Inhibition of IFITM3 in cerebrovascular endothelium alleviates Alzheimer's-related phenotypes.

Alzheimers Dement

January 2025

Center for Geriatric Medicine, Key Laboratory of Alzheimer's Disease of Zhejiang Province, The First Affiliated Hospital and Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China.

Introduction: Interferon-induced transmembrane protein 3 (IFITM3) modulates γ-secretase in Alzheimer's Disease (AD). Although IFITM3 knockout reduces amyloid β protein (Aβ) production, its cell-specific effect on AD remains unclear.

Methods: Single nucleus RNA sequencing (snRNA-seq) was used to assess IFITM3 expression.

View Article and Find Full Text PDF

Recent advances in genome editing tools and CRISPR-Cas technologies have enabled plant genome engineering reach new heights. The current regulatory exemptions for certain categories of genome edited products, such as those derived from SDN-1 and SDN-2, which are free of any transgene, have significantly accelerated genome editing research in a number of agricultural crop plants in different countries. Although CRISPR-Cas technology is becoming increasingly popular, it is still important to carefully consider a number of factors before planning and carrying conducting CRISPR-Cas studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!