Insulin and IGFs are potent inducers of skeletal muscle differentiation. Although PI3K is known to be involved in skeletal muscle differentiation, its downstream targets in this process are not clearly defined. We investigated the roles of Akt and mammalian target of rapamycin (mTOR) in skeletal muscle differentiation. LY294002, a pharmacological inhibitor of PI3K, and the immunosuppressant rapamycin inhibited insulin-induced differentiation of C2C12 myoblasts. LY294002 and rapamycin suppressed myosin heavy chain expression and myotube formation. Transient reporter assays showed that both inhibitors repress muscle creatine kinase (MCK) and myogenin gene transcription. Heterologous expression of Akt1/PKB(alpha) potently suppressed MCK gene transcription without affecting myogenin gene transcription, whereas heterologous expression of Akt2 increased myogenin and MCK gene transcription. Finally, overexpression of myogenin rescued the inhibitory effect of rapamycin on MCK gene transcription, whereas it failed to rescue the inhibitory effect of LY294002 and Akt1. These results suggest that insulin regulates myogenic differentiation chiefly at the level of myogenin gene transcription via PI3K and mTOR. PI3K activity, but not mTOR, may regulate transcriptional activity of myogenin. Our data also suggest that Akt1 and Akt2 play distinct roles in myogenic differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/endo.143.3.8687 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.
Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom.
Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Discovery Research Platform for Hidden Cell Biology, University of Edinburgh, Edinburgh, Scotland, UK.
The coronavirus HCoV-OC43 circulates continuously in the human population and is a frequent cause of the common cold. Here, we generated a high-resolution atlas of the transcriptional and translational landscape of OC43 during a time course following infection of human lung fibroblasts. Using ribosome profiling, we quantified the relative expression of the canonical open reading frames (ORFs) and identified previously unannotated ORFs.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Chemistry, Ashoka University, Sonipat, Haryana, India.
Pancreatic Ductal Adenocarcinoma (PDAC) is a devastating disease with poor clinical outcomes, which is mainly because of delayed disease detection, resistance to chemotherapy, and lack of specific targeted therapies. The disease's development involves complex interactions among immunological, genetic, and environmental factors, yet its molecular mechanism remains elusive. A major challenge in understanding PDAC etiology lies in unraveling the genetic profiling that governs the PDAC network.
View Article and Find Full Text PDFRedox Rep
December 2025
Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.
Objective: Myocardial ischemia-reperfusion injury (MIRI) is a highly complex disease with high morbidity and mortality. Studying the molecular mechanism of MIRI and discovering new targets are crucial for the future treatment of MIRI.
Methods: We constructed the MIRI rat model and hypoxia/reoxygenation (H/R) injury cardiomyocytes model.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!