Myeloma expression systems have been utilized successfully for the production of various recombinant proteins. In particular, myeloma cell lines have been exploited to express a variety of different antibodies for diagnostic applications as well as in the treatment of various human diseases. The use of myeloma cells for antibody production is advantageous because they are professional immunoglobulin-secreting cells and are able to make proper post-translational modifications. Proper glycosylation has been shown to be important for antibody function. Advances in genetic engineering and molecular biology techniques have made it possible to isolate murine and human variable regions of almost any desired specificity. Antibodies and antibody variants produced in myeloma cells have been extremely helpful in elucidating the amino acid residues and structural motifs that contribute to antibody function. Because of their domain nature, immunoglobulin genes can be easily manipulated to produce chimeric or humanized antibodies. These antibodies are less immunogenic in humans and also retain their specificity for antigen and biologic properties. In addition, novel proteins in which antibodies are fused to non-immunoglobulin sequences as well as secretory IgA have been produced in myeloma cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0022-1759(01)00559-2 | DOI Listing |
Cytotherapy
December 2024
Department of Medicine, Kuopio University Hospital, Kuopio, Finland. Electronic address:
The amount of CD34 cells has been for decades the most important marker of autologous graft quality, but other graft cells, including various lymphocyte subsets, have gained some interest. This review attempts to summarize what is known about autograft cellular composition regarding post-transplant outcomes. The amount of CD34 cells in the graft is associated with tempo of platelet recovery.
View Article and Find Full Text PDFAnn Hematol
January 2025
Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China.
Multiple myeloma(MM) remains incurable with high relapse and chemoresistance rates. Differentially expressed genes(DEGs) between newly diagnosed myeloma and secondary plasma cell leukemia(sPCL) were subjected to a weighted gene co-expression network analysis(WGCNA). Drug resistant myeloma cell lines were established.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Center for Translational Research in Hematologic Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
Background: Cancer immunotherapy using immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, patients with multiple myeloma (MM) rarely respond to ICB. Accumulating evidence indicates that the complicated tumor microenvironment (TME) significantly impacts the efficacy of ICB therapy.
View Article and Find Full Text PDFNat Commun
January 2025
Center for Early Detection and Interception of Blood Cancers, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Early therapeutic intervention in high-risk smoldering multiple myeloma (HR-SMM) has shown benefits, however, no studies have assessed whether biochemical progression or response depth predicts long-term outcomes. The single-arm I-PRISM phase II trial (NCT02916771) evaluated ixazomib, lenalidomide, and dexamethasone in 55 patients with HR-SMM. The primary endpoint, median progression-free survival (PFS), was not reached (NR) (95% CI: 57.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
School of Life Sciences, Anhui Medical University, Hefei, China.
Multiple myeloma (MM) is a haematological lymphoid malignancy marked by significant morbidity due to severe complications. Despite advances in targeted therapies, including proteasome inhibitors and the BCL-2 inhibitor venetoclax, drug resistance frequently occurs, with the underlying mechanisms poorly understood. This study investigates the role of lysosome-associated protein transmembrane 5 (LAPTM5) in conferring resistance to venetoclax in relapsed MM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!