An O-specific polysaccharide containing 2-acetamidino-2-deoxy-beta-D-glucopyranose (Glcp2Am), 2,4-diacetamido-2,4,6-trideoxy-beta-D-glucopyranose (QuipNAc4NAc, bacillosamine) and 2,4-di-(N-acetyl-L-alanylamino)-2,4,6-trideoxy-beta-D-glucopyranose (QuipNAlaAc4NAlaAc) was isolated from the phenol-soluble lipopolysaccharide fraction of the mushroom-associated bacterium Pseudomonas reactans. The structure, determined by means of chemical analysis and 1D and 2D NMR spectroscopy, showed a linear trisaccharide-repeating unit, as shown below:-->3)-beta-D-QuipNAlaAc4NAlaAc-(1-->3)-alpha-D-Glcp2Am-(1-->3)-alpha-D-QuipNAc4NAc(1-->To our knowledge, this is the first complete O-chain structure reported for the lipopolysaccharide of a mushroom-associated bacterium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0008-6215(02)00004-6 | DOI Listing |
Environ Res
January 2025
Man-Technology-Environment Research Center (MTM), Örebro University, Örebro SE-701 82, Sweden.
As the volume of plastic waste from electrical and electronic equipment (WEEE) continues to rise, a significant portion is disposed of in the environment, with only a small fraction being recycled. Both disposal and recycling pose unknown health risks that require immediate attention. Existing knowledge of WEEE plastic toxicity is limited and mostly relies on epidemiological data and association studies, with few insights into the underlying toxicity mechanisms.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea.
Background/objectives: Aronia extract or its active compounds, especially anthocyanin, have shown potential for Alzheimer's disease (AD)-related pathologies, including neuroinflammation, fibrillogenesis of amyloid beta (Aβ), and cognitive impairment. However, there was still concern about their structural instability in vivo and in vitro. To solve the instability of anthocyanins, we combined aronia bioactive factions (ABFs) and alginic acid via electrostatic molecular interactions and created an ABF-alginic acid nanocomplex (AANCP).
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China.
Background/objectives: Septic cardiomyopathy (SCM) is a severe cardiac complication of sepsis, characterized by cardiac dysfunction with limited effective treatments. This study aimed to identify repurposable drugs for SCM by integrated multi-omics and network analyses.
Methods: We generated a mouse model of SCM induced by lipopolysaccharide (LPS) and then obtained comprehensive metabolic and genetic data from SCM mouse hearts using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and RNA sequencing (RNA-seq).
Gut Microbes
December 2025
Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
Protein glycosylation has been considered as a fundamental phenomenon shared by all domains of life. In , glycosylation of flagellins A and B with pseudaminic acid have been rigorously confirmed and shown to be essential for flagella assembly and bacterial colonization. In addition to flagellins, several other proteins including RecA, AlpA/B, and BabA/B in have also been reported to be glycosylated and to be dependent on the lipopolysaccharide (LPS) biosynthetic pathway.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, 880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi, 321-0293, Japan.
Although alveolar hyperoxia exacerbates lung injury, clinical studies have failed to demonstrate the beneficial effects of lowering the fraction of inspired oxygen (FO) in patients with acute respiratory distress syndrome (ARDS). Atelectasis, which is commonly observed in ARDS, not only leads to hypoxemia but also contributes to lung injury through hypoxia-induced alveolar tissue inflammation. Therefore, it is possible that excessively low FO may enhance hypoxia-induced inflammation in atelectasis, and raising FO to an appropriate level may be a reasonable strategy for its mitigation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!