Selective cardiorespiratory and catecholaminergic areas express the hypoxia-inducible factor-1alpha (HIF-1alpha) under in vivo hypoxia in rat brainstem.

Eur J Neurosci

UPR 2216 Neurobiologie génétique et intégrative CNRS, Institut de Neurobiologie Alfred Fessard, 91198 Gif/Yvette, France.

Published: December 2001

Under severe oxygen deprivation, all cells are able to express the transcription factor HIF-1, which activates a wide range of genes. Under tolerable hypoxia, chemosensory inputs are integrated in brainstem areas, which control cardiorespiratory responses. However, the molecular mechanisms of this functional acclimatization are unknown. We investigated when and where the inducible HIF-1alpha subunit is expressed in the rat brainstem in vivo, under physiological hypoxia. The regional localization of HIF-1alpha mRNA and protein was determined by in situ hybridization and immunocytochemistry in adult male rats exposed to moderate hypoxia (10% O2) for 1-6 h. HIF-1alpha protein was found in cell types identified by immunocytochemistry as catecholaminergic neurons. Hypoxia induced HIF-1alpha mRNA and protein in only some parts of the brainstem located dorsomedially and ventrolaterally, which are those involved in the cardiorespiratory control. No labelling was detected under normoxia. The protein was detected in glia and neurons after 1 and 6 h of hypoxia, respectively. A subset of A2C2 and A1C1 catecholaminergic neurons colocalized tyrosine hydroxylase and HIF-1alpha proteins under hypoxia, but no HIF-1alpha was detected in more rostral catecholaminergic areas. In contrast to cardiorespiratory areas, HIF-1alpha protein was already present under normoxia in glial cells of brainstem tracts but was not overexpressed under hypoxia, although HIF-1alpha mRNA was up-regulated. In conclusion, there appear to be two regulatory mechanisms for HIF-1alpha expression in the brainstem: hypoxic induction of HIF-1alpha protein in cardiorespiratory-related areas and constitutive protein expression unaffected by hypoxia in brainstem tracts.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.0953-816x.2001.01816.xDOI Listing

Publication Analysis

Top Keywords

hif-1alpha mrna
12
hif-1alpha protein
12
hif-1alpha
11
hypoxia
9
catecholaminergic areas
8
rat brainstem
8
mrna protein
8
catecholaminergic neurons
8
neurons hypoxia
8
hypoxia hif-1alpha
8

Similar Publications

Recent therapeutic strategies have highlighted the potential of β-hydroxybutyrate (BHB) and α-ketoglutarate (α-KG) as effective anticancer agents, particularly for colon cancer. These metabolites can modulate cellular metabolism and induce epigenetic changes, inhibiting tumor growth. Nonetheless, certain cancer cells may utilize ketone bodies, like BHB as nutrient sources under hypoxic conditions, potentially reducing treatment efficacy.

View Article and Find Full Text PDF

Endometriosis is a chronic inflammatory disorder characterized by presence of endometrial tissue outside the uterine cavity. Immunohistochemical analysis (IHC) revealed markedly elevated expression of IL6ST in endometrial tissue of patients with ovarian endometriosis. Level of methylation of IL6ST is diminished in patients with endometriosis, whereas level of mRNA expression is markedly elevated by RT-PCR.

View Article and Find Full Text PDF

Aims: Magnesium ions (Mg) play an important role in promoting cartilage repair in cartilage lesions. However, no research has focused on the role of Mg combined with microfracture (MFX) in hyaline-like cartilage repair mediated by cartilage injury. This study aimed to investigate the beneficial effects of the combination of MFX and Mg in cartilage repair.

View Article and Find Full Text PDF

Introduction: Lung cancer is recognized as a highly lethal disease, demanding swift and accurate solutions. Previous analysis showed the cytotoxic impact of extract containing ergost-22-en-3-one and ergost-7-en3-ol against A549 lung cancer cells, with an IC value of 9.38 μg/mL.

View Article and Find Full Text PDF

[Bioinformatics and animal experiments reveal mechanism of Linggui Zhugan Decoction in ameliorating chronic heart failure after myocardial infarction via HIF-1α/HO-1 signaling pathway].

Zhongguo Zhong Yao Za Zhi

December 2024

School of Integrated Chinese Medicine and Western Medicine, Anhui University of Chinese Medicine Hefei 230012, China Anhui Province Key Laboratory of Chinese Medicinal Formula Hefei 230012, China.

This study aims to investigate the effect of Linggui Zhugan Decoction(LGZGD) on autophagy in the mouse model of chronic heart failure(CHF) induced by myocardial infarction(MI), as well as the regulatory effect of LGZGD on the hypoxia-inducible factor-1α(HIF-1α)/heme oxygenase-1(HO-1) signaling pathway, based on bioinformatics and animal experiments. The active ingredients and corresponding targets of LGZGD were retrieved from the Traditional Chinese Medicine Systems Pharmacology and Analysis Database, and GEO, GeneCards, and DisGeNET were searched for the disease targets. Cytoscape was used to establish a "drug-component-target" network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!