To induce toxicity, cholera toxin (CT) must first bind ganglioside G(M1) at the plasma membrane, enter the cell by endocytosis, and then traffic retrograde into the endoplasmic reticulum. We recently proposed that G(M1) provides the sorting motif necessary for retrograde trafficking into the biosynthetic/secretory pathway of host cells, and that such trafficking depends on association with lipid rafts and lipid raft function. To test this idea, we examined whether CT action in human intestinal T84 cells depends on membrane cholesterol. Chelation of cholesterol with 2-hydroxypropyl beta-cyclodextrin or methyl beta-cyclodextrin reversibly inhibited CT-induced chloride secretion and prolonged the time required for CT to enter the cell and induce toxicity. These effects were specific to CT, as identical conditions did not alter the potency or toxicity of anthrax edema toxin that enters the cell by another mechanism. We found that endocytosis and trafficking of CT into the Golgi apparatus depended on membrane cholesterol. Cholesterol depletion also changed the density and specific protein content of CT-associated lipid raft fractions but did not entirely displace the CT-G(M1) complex from these lipid raft microdomains. Taken together these data imply that cholesterol may function to couple the CT-G(M1) complex with raft domains and with other membrane components of the lipid raft required for CT entry into the cell.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M109834200DOI Listing

Publication Analysis

Top Keywords

lipid raft
16
membrane cholesterol
12
induce toxicity
8
enter cell
8
ct-gm1 complex
8
cholesterol
6
membrane
5
lipid
5
raft
5
uncoupling cholera
4

Similar Publications

Enhanced bioaccessibility of cyclolinopeptides via zein-cyclodextrin nanoparticles: Simulated gastrointestinal digestion and cellular uptake study.

Food Chem

January 2025

Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China. Electronic address:

Cyclolinopeptides (CLS) are hydrophobic cyclic peptides in flaxseed with multiple bioactive activities. This study developed zein (Z)-cyclodextrin (CD) binary nanoparticles (NPs) as an oral delivery system for CLS. Z-CD NP had a smaller diameter (D) and better encapsulation effect on CLS.

View Article and Find Full Text PDF

Plasma membrane (PM) simulations at longer length and time scales at nearly atomistic resolution can provide invaluable insights into cell signaling, apoptosis, lipid trafficking, and lipid raft formation. We propose a coarse-grained (CG) model of a mammalian PM considering major lipid head groups distributed asymmetrically across the membrane bilayer and validate the model against bilayer structural properties from atomistic simulation. Using the proposed CG model, we identify a recurring pattern in the passive collective cholesterol transbilayer motion and study the individual cholesterol flip-flop events and associated pathways along with lateral ordering in the bilayer during a flip-flop event.

View Article and Find Full Text PDF

Oral delivery of MOMIPP lipid nanoparticles for methuosis-induced cancer chemotherapy.

Nanoscale

January 2025

School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

Methuosis, a non-apoptotic pattern of cell death, triggers the accumulation of macropinosome-derived vacuoles in the cytoplasm. Through this novel mechanism, methuosis inducers possess great potential in fighting apoptosis-resistant cancer cells and offer a promising alternative for cancer treatment. However, the potent methuosis inducer, 3-(5-methoxy, 2-methyl-1-indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MOMIPP), faces an intractable issue of insolubility in most solvents, hindering dosing and compromising the validation of its antitumor efficacy.

View Article and Find Full Text PDF

Toxic Effects of Butanol in the Plane of the Cell Membrane.

Langmuir

January 2025

Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45220, United States.

Solvent toxicity limits -butanol fermentation titer, increasing the cost and energy consumption for subsequent separation processes and making biobased production more expensive and energy-intensive than petrochemical approaches. Amphiphilic solvents such as -butanol partition into the cell membrane of fermenting microorganisms, thinning the transverse structure, and eventually causing a loss of membrane potential and cell death. In this work, we demonstrate the deleterious effects of -butanol partitioning upon the lateral dimension of the membrane structure, called membrane domains or lipid rafts.

View Article and Find Full Text PDF

Plasma membranes are known to segregate into liquid disordered and ordered nanoscale phases, the latter being called lipid rafts. The structure, lipid composition, and function of lipid rafts have been the subject of numerous studies using a variety of experimental and computational methods. Double electron-electron resonance (DEER, also known as PELDOR) is a member of the pulsed dipole EPR spectroscopy (PDS) family of techniques, allowing the study of nanoscale distances between spin-labeled molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!