Complement (C) is one of the most critical defence mechanisms of the innate immunity against cerebral infection by viruses, bacteria and fungi, with different molecular pathways contributing to the clearance of the invading pathogens. There is now compelling evidence that C proteins can be synthesized by brain cells in response to the infectious challenge and leading to cytotoxic and cytolytic activities against the harmful intruders. However, since there is also emerging evidence that uncontrolled C biosynthesis/activation can lead to brain inflammation with loss of neurons and oligodendrocytes, it is important to highlight that C may have adverse effects in infectious diseases of the CNS and induce profound tissue damage. The role of C in brain infection may even be more versatile. Many invading pathogens are not helpless against C attack and can use the membrane-bound C molecules to invade the host, either by binding directly or after decoration with C fragments. During budding viruses can acquire complement inhibitors from the host cell membrane and thus behave like 'Trojan horses' that are sheltered from the local innate immune response. Moreover, pathogens have evolved means of molecular mimicry with the expression of C inhibitor-like molecules to escape recognition and clearance by the C system. We herein provide a comprehensive and insightful review of the expression and the role of the C system in the brain. The three main focuses are: (i) C activation and lysis of pathogens in the brain; (ii) C-dependent neuroinvasion mechanisms (iii) uncontrolled C activation in inflamed CNS contributing to tissue damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0161-5890(01)00104-3 | DOI Listing |
Mol Oral Microbiol
January 2025
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Streptococcus mutans, the principal pathogen associated with dental caries, impacts individuals across all age groups and geographic regions. Beyond its role in compromising oral health, a growing body of research has established a link between S. mutans and various systemic diseases, including immunoglobulin A nephropathy (IgAN), nonalcoholic steatohepatitis (NASH), infective endocarditis (IE), ulcerative colitis (UC), cerebral hemorrhage, and tumors.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kita 761-0795, Kagawa, Japan.
Kunth is native to tropical America and has invaded tropical and subtropical Asia and numerous Pacific Islands. It forms dense thickets and reduces native species diversity and populations in its introduced range. This invasive vine also seriously impacts many agricultural crops and is listed as one of the world's 100 worst invasive alien species.
View Article and Find Full Text PDFPathogens
January 2025
Centre for Environmental and Marine Studies (CESAM), Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
Globally, forests are constantly threatened by a plethora of disturbances of natural and anthropogenic origin, such as climate change, forest fires, urbanization, and pollution. Besides the most common stressors, during the last few years, Portuguese forests have been impacted by severe decline phenomena caused by invasive pathogens, many of which belong to the genus . The genus includes a large number of species that are invading forest ecosystems worldwide, chiefly as a consequence of global trade and human activities.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department Poultry Health, Royal GD, 7418 EZ Deventer, The Netherlands.
Some strains of can cause spondylitis and bacterial osteomyelitis. Translocation and bacteremia are pivotal to the pathogenesis and clinical disease. Virulence typing to distinguish extra-intestinal disease of lesion from cloacal strains remains difficult.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Environmental Studies, University of California Santa Cruz, Santa Cruz, CA, USA.
Forecasting emergent pest spread is paramount to mitigating their impacts. For host-specialized pests, epidemiological models of spread through a single host population are well developed. However, most pests attack multiple host species; the challenge is predicting which communities are most vulnerable to infestation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!