Nonmelanoma skin cancers represent the most common malignant neoplasms in humans. UV-B play a major role in the etiology of these tumors, but exposure to environmental procarcinogens is also involved. CYP catalyzes numerous chemical carcinogen bioactivations and effects of UV-B on their expression are poorly understood. The aim of this study was to explore the molecular events involved in the induction of CYP1B1, a major cutaneous CYP, by UV-B. Our results demonstrated that unique UV-B exposure (20 mJ/cm(2)) increases human CYP1B1 transcript in primary keratinocytes and HaCaT cell cultures. Among 20 human samples studied, we observed a large interindividual variability of CYP1B1 mRNA induction (1.1- to 4.5-fold). Pretreatment with an antioxidant, N-acetylcysteine, repressed CYP1B1 increase, suggesting the involvement of UV-B photoproducts. alpha-Amanitin inhibition studies and CAT assays demonstrated that CYP1B1 mRNA induction is associated with a transcriptional activation of its expression. alpha-Naphthoflavone inhibition studies and CAT assays performed after directed mutagenesis of xenobiotic responsive element sites showed the involvement of Ah receptor. Taken together, these data demonstrated that UV-B induces CYP1B1 gene expression after an activation of its transcription, which involves Ah receptor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/taap.2001.9335 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!