17beta-Oestradiol treatment modulates nitric oxide synthase activity in MDA231 tumour with implications on growth and radiation response.

Br J Cancer

Experimental Oncology Group, School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK.

Published: January 2002

The putative oestrogen receptor negative human breast cancer cell line MDA231, when grown as tumours in mice continually receiving 17beta-oestradiol, showed substantially increased growth rate when compared to control animals. Further, we observed that 17beta-oestradiol treatment could both increase the growth rate of established MDA231 tumours as well as decreasing the time taken for initiating tumour growth. We have also demonstrated that this increase in growth rate is accompanied by a four-fold increase in nitric oxide synthase activity, which was predominantly the inducible form. Inducible-nitric oxide synthase expression in these tumours was confirmed by immunohistochemical analysis and appeared localized primarily in areas between viable and necrotic regions of the tumour (an area that is presumably hypoxic). Prophylactic treatment with the nitric oxide synthase inhibitor nitro-L-arginine methyl ester resulted in significant reduction in this apparent 17beta-oestradiol-mediated growth promoting effect. Tumours derived from mice receiving 17beta-oestradiol-treatment were characterized by a significantly lower fraction of perfused blood vessels and an indication of an increased hypoxic fraction. Consistent with these observations, 17beta-oestradiol-treated tumours were less radio-responsive compared to control tumours when treated with a single radiation dose of 15 Gy. Our data suggests that long-term treatment with oestrogen could significantly alter the tumour oxygenation status during breast tumour progression, thus affecting response to radiotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746548PMC
http://dx.doi.org/10.1038/sj.bjc.6600032DOI Listing

Publication Analysis

Top Keywords

oxide synthase
16
nitric oxide
12
growth rate
12
17beta-oestradiol treatment
8
synthase activity
8
compared control
8
increase growth
8
growth
6
tumours
6
tumour
5

Similar Publications

Ginsenoside Rg1 improves hypoxia-induced pulmonary vascular endothelial dysfunction through TXNIP/NLRP3 pathway-modulated mitophagy.

J Ginseng Res

January 2025

The Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China.

Background: Vascular endothelial dysfunction (VED) is one of the main pathogenic events in pulmonary arterial hypertension (PAH). Previous studies have demonstrated that the ginsenoside Rg1 (Rg1) can ameliorate PAH, but the mechanism by which Rg1 affects pulmonary VED in hypoxia-induced PAH remains unclear.

Methods: Network pharmacology, molecular docking and other experiments were used to explore the mechanisms by which Rg1 affects PAH.

View Article and Find Full Text PDF

Obesity treatment requires an individualized approach, emphasizing the need to identify metabolic pathways of diagnostic relevance. Toll-like receptors (TLRs), particularly TLR2 and TLR4, play a crucial role in metabolic disorders, as receptor deficiencies improves insulin sensitivity and reduces obesity-related inflammation. Additionally, hydrogen sulfide (HS) influences lipolysis, adipogenesis, and adipose tissue browning through persulfidation.

View Article and Find Full Text PDF

Ameliorative impact of sacubitril/valsartan on paraquat-induced acute lung injury: role of Nrf2 and TLR4/NF-κB signaling pathway.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.

Herbicides such as paraquat (PQ) are frequently utilized particularly in developing nations. The present research concentrated on the pulmonary lesions triggered by PQ and the beneficial effect of the angiotensin receptor neprilysin inhibitor (ARNI), sacubitril/valsartan, against such pulmonary damage. Five groups of rats were established: control, ARNI, PQ (10 mg/kg), ARNI 68 + PQ, and ARNI 34 + PQ.

View Article and Find Full Text PDF

A terpene synthase gene (mtas) from Menisporopsis theobromae BCC 4162 was heterologously expressed in Aspergillus oryzae NSAR1, resulting in the production of (+)-aristolochene. Mutations were introduced in MtAS at aromatic residues (Y83, F103, F169, and W323) surrounding the active site, which are critical for precursor cyclisation and intermediate stabilisation during aristolochene biosynthesis. Transformants harbouring mutated mtas, specifically F103W, F169A and F169W, produced (2R,4S,5R,7S)-2-hydroxyaristolochene as the major product, along with aristolochene and other tentative metabolites, including germacrene A and sesquiterpenoids.

View Article and Find Full Text PDF

Background: Chronic soft tissue injury is characterized by sterile inflammation and pain. Gua sha with Masanggoubang oil (GSMO) treatment has been found to possess anti-inflammatory and analgesic effects.

Objectives: To explore the mechanism of GSMO in chronic soft tissue injuries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!