The induction of Fos protein was used to localise hypothalamic neurones activated by ramps of noxious skin heating delivered at a rate of 2.5 degrees C s(-1) to preferentially activate C-nociceptors. This was combined with retrograde transport of cholera toxin subunit B from identified 'pressor' and 'depressor' sites in the dorsolateral/lateral or the ventrolateral columns of the periaqueductal grey. Fos-positive neurones were found throughout the rostral hypothalamus. Despite this wide distribution, those neurones double labelled retrogradely from the periaqueductal grey were focused in the lateral area of the anterior hypothalamus. More than 20 % of Fos-positive neurones in this region projected to depressor sites in the ventrolateral periaqueductal grey, and 10 % projected to its dorsolateral/lateral sector. These results are discussed in relation to the peripheral inputs to hypothalamic-midbrain pathways and their role in the cardiovascular responses to different components of the pain signal.

Download full-text PDF

Source
http://dx.doi.org/10.1113/eph8702348DOI Listing

Publication Analysis

Top Keywords

periaqueductal grey
16
hypothalamic neurones
8
fos-positive neurones
8
neurones
5
c-nociceptor activation
4
activation hypothalamic
4
neurones columnar
4
columnar organisation
4
organisation projections
4
periaqueductal
4

Similar Publications

Opioidergic activation of the descending pain inhibitory system underlies placebo analgesia.

Sci Adv

January 2025

Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.

Placebo analgesia is caused by inactive treatment, implicating endogenous brain function involvement. However, the neurobiological basis remains unclear. In this study, we found that μ-opioid signals in the medial prefrontal cortex (mPFC) activate the descending pain inhibitory system to initiate placebo analgesia in neuropathic pain rats.

View Article and Find Full Text PDF

Functional Magnetic Resonance Imaging of Post-Traumatic Headache: A Systematic Review.

Curr Pain Headache Rep

January 2025

Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 5, Entrance 1A, 2600 Glostrup, Copenhagen, Denmark.

Purpose Of Review: To evaluate existing functional magnetic resonance imaging (fMRI) studies on post-traumatic headache (PTH) following traumatic brain injury (TBI).

Recent Findings: We conducted a systematic search of PubMed and Embase databases from inception to February 1, 2024. Eligible fMRI studies were required to include adult participants diagnosed with acute or persistent PTH post-TBI in accordance with any edition of the International Classification of Headache Disorders.

View Article and Find Full Text PDF

Pain is a dynamic and nonlinear experience shaped by injury and contextual factors, including expectations of future pain or relief . While µ opioid receptors are central to the analgesic effects of opioid drugs, the endogenous opioid neurocircuitry underlying pain and placebo analgesia remains poorly understood. The ventrolateral column of the posterior periaqueductal gray is a critical hub for nociception and endogenous analgesia mediated by opioid signaling .

View Article and Find Full Text PDF

The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons that regulate responses to a variety of interoceptive and cutaneous sensory signals. One lateral PB subpopulation expresses the Calca gene, which codes for the neuropeptide calcitonin gene-related peptide (CGRP). These PB neurons relay signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet their inputs and their neurochemical identity are only partially understood.

View Article and Find Full Text PDF

An intra-brainstem circuitry for pain-induced inhibition of itch.

Neuroscience

January 2025

Center for Neuroscience, Indian Institute of Science, Bengaluru 560012, India. Electronic address:

Pain and itch are unpleasant and distinct sensations that give rise to behaviors such as reflexive withdrawal and scratching in humans and mice. Interestingly, it has been observed that pain modulate itch through the neural circuits housed in the brain and spinal cord. However, we are yet to fully understand the identities of, and mechanisms by which specific neural circuits mediate pain-induced modulation of itch.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!