Differential effects of short affinity tags on the crystallization of Pyrococcus furiosus maltodextrin-binding protein.

Acta Crystallogr D Biol Crystallogr

Protein Engineering Section, Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, PO Box B, Frederick, MD 21702, USA.

Published: March 2002

Pyrococcus furiosus maltodextrin-binding protein readily forms large orthorhombic crystals that diffract to high resolution. This protein was used as a model system to investigate the influence of five short affinity tags (His(6), Arg(5), Strep tag II, FLAG tag and the biotin acceptor peptide) on the formation of protein crystals and their ability to diffract X-rays. The results indicate that the amino-acid sequence of the tag can have a profound effect on both of these parameters. Consequently, the ability to obtain diffracting crystals of a particular protein may depend as much on which affinity tag is selected as it does on whether an affinity tag is used at all.

Download full-text PDF

Source
http://dx.doi.org/10.1107/s0907444901021187DOI Listing

Publication Analysis

Top Keywords

short affinity
8
affinity tags
8
pyrococcus furiosus
8
furiosus maltodextrin-binding
8
maltodextrin-binding protein
8
affinity tag
8
protein
5
tag
5
differential effects
4
effects short
4

Similar Publications

Aptamer-based fluorescence biosensor for rapid detection of chloramphenicol based on pyrene excimer switch.

Anal Bioanal Chem

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.

Chloramphenicol (CAP) is widely used in treating bacteria infection in animals and humans. However, the accumulation of CAP in food and environment caused serious health risk to human. Consequently, sensitive and selective detection of CAP is of great importance in environmental monitoring and food safety.

View Article and Find Full Text PDF

Aptamers are short oligonucleotides that bind specifically to various ligands and are characterized by their low immunogenicity, thermostability, and ease of labeling. Many biomedical applications of aptamers as biosensors and drug delivery agents are currently being actively researched. Selective affinity selection with exponential ligand enrichment (SELEX) allows to discover aptamers for a specific target, but it only provides information about the sequence of aptamers; hence other approaches are used for determining aptamer structure, aptamer-ligand interactions and the mechanism of action.

View Article and Find Full Text PDF

Insight into Iron(III)-Tannate Biosorbent for Adsorption Desalination and Tertiary Treatment of Water Resources.

ACS Omega

January 2025

Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, 1907 East Gate City Blvd, Greensboro, North Carolina 27401, United States.

An innovative biosorbent-based water remediation unit could reduce the demand for freshwater while protecting the surface and groundwater sources by using saline water resources, such as brine, brackish water, and seawater for irrigation. Herein, for the first time, we introduce a simple, rapid, and cost-effective iron(III)-tannate biosorbent-based technology, which functions as a stand-alone fixed-bed filter system for the treatment of salinity, heavy-metal contaminants, and pathogens present in a variety of water resources. Our approach presents a streamlined, cost-efficient, energy-saving, and sustainable avenue for water treatment, distinct from current adsorption desalination or conventional membrane techniques supplemented with chemical and UV treatments for disinfection.

View Article and Find Full Text PDF

An engineered Palivizumab IgG2 subclass for synthetic gp130 and fas mediated signaling.

J Biol Chem

January 2025

Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany. Electronic address:

Recently, we phenocopied Interleukin (IL-)6 signaling using the dimerized single-chain variable fragment (scFv) derived from the respiratory syncytial virus (RSV) IgG1-antibody Palivizumab (PLHFc) to activate a Palivizumab anti-idiotypic nanobody (AIP)-gp130 receptor fusion protein. Palivizumab was unable to activate STAT3 signaling, so we aimed to create a similar ligand capable of triggering this pathway. Here, we created three variants of the ligand called PLH0Fc, PLH4Fc and PLH8Fc by shortening the spacer region connecting PLH and Fc from 23 amino acids in PLHFc to 0 amino acids or expanding it by rigid linkers of 4 or 8 alpha helical loops, respectively.

View Article and Find Full Text PDF

As a Group 2B carcinogen, accurate and efficient detection for Fumonisin B1 (FB1) is essential. The emergence of aptamers presents a viable solution to meet this demand. In this study, a truncated aptamer named Apt40 was developed, showcasing remarkable binding affinity to FB1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!