Recent studies in cultured cells have provided evidence that a variety of pathobiologic stimuli, including high glucose, angiotensin II, and thromboxane A(2), trigger a signaling pathway leading to autocrine induction of TGF-beta1. TGF-beta1 production through this pathway may profoundly affect cell growth, matrix synthesis, and response to injury. This study examines the role of autocrine versus exogenously added TGF-beta1 in cellular proliferation and collagen IV production, critical targets of TGF-beta1 signaling, using renal cells derived from TGF-beta1 knockout (KO) animals or wild-type (WT) controls. Growth of WT and KO cells was assessed by cell counting and [(3)H]thymidine uptake. Basal and TGF-beta1-stimulated collagen production was assessed by Northern and Western blotting; transcriptional activity of the alpha1(IV) collagen gene was assessed by transient transfection analysis. KO cells grew at a faster rate than WT cells carefully matched for plating density and passage number. This increased growth rate was paralleled by increases in [(3)H]thymidine uptake. KO cells expressed lower levels of the cell cycle inhibitors p21 and p27 than WT cells. KO cells failed to express TGF-beta1, as expected. Basal TGF-beta3 mRNA levels were higher in KO cells than in WT cells. WT cells expressed higher basal levels of TGF-beta2 mRNA than KO cells. Basal alpha1(IV) and alpha2(IV) collagen mRNA and protein expression were significantly lower in KO cells than WT cells. Administration of exogenous TGF-beta1 induced collagen IV production in both KO and WT cells. Although basal transcriptional activity of an alpha1(IV) collagen-CAT construct was lower in KO cells than WT cells, administration of exogenous TGF-beta1 was associated with significant increases in transcriptional activity of this construct in both KO and WT cells. These studies provide evidence that autocrine production of TGF-beta1 may play a critical role in regulation of growth and basal collagen IV production by renal tubular epithelial cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/153537020222700304 | DOI Listing |
J Biomed Mater Res B Appl Biomater
February 2025
McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA.
Cardiovascular diseases (CVDs) were responsible for approximately 19 million deaths in 2020, marking an increase of 18.7% since 2010. Biological decellularized patches are common therapeutic solutions for CVD such as cardiac and valve defects.
View Article and Find Full Text PDFMol Cell Biochem
January 2025
Department of Cardiology, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory, Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
Increased activity of acid sphingomyelinase (ASMase) has been linked to diabetes and organ fibrosis. Nevertheless, the precise influence of ASMase on diabetic myocardial fibrosis and the corresponding molecular mechanisms remain elusive. In this study, we aim to elucidate whether ASMase contributes to diabetic myocardial fibrosis through the phosphorylation mediated by MAPK, thereby culminating in the development of diabetic cardiomyopathy (DCM).
View Article and Find Full Text PDFMar Drugs
January 2025
Division of Functional Food Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea.
(), an edible brown alga, is rich in isophloroglucin A (IPA) phlorotannin compounds and is effective in preventing diseases, including diabetes. We evaluated its anti-glycation ability, intracellular reactive oxygen species scavenging activity, inhibitory effect on the accumulation of intracellular MGO/MGO-derived advanced glycation end products (AGE), and regulation of downstream signaling pathways related to the AGE-receptor for AGEs (RAGE) interaction. IPA (0.
View Article and Find Full Text PDFMar Drugs
December 2024
CESAM-Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.
This review is focused on the research, innovation and technological breakthroughs on marine invertebrate collagens and their applications. The findings reveal that research dates back to the 1970s, and after a period of reduced activity, interest in collagens from several marine invertebrate groups was renewed around 2008, likely driven by the increased commercial interest in these biomolecules of marine origin. Research and development are predominantly reported from China and Japan, highlighting significant research interest in cnidarians (jellyfish), echinoderms (sea cucumbers, sea urchins and starfish), molluscs (squid and cuttlefish) and sponges.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan.
Wound healing incurs various challenges, making it an important topic in medicine. Short-chain peptides from fish protein hydrolysates possess wound healing properties that may represent a solution. In this study, perch hydrolysates were produced from perch side steams using a designed commercial complex enzyme via a proprietary pressure extraction technique.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!