In the present paper, we report that injection of testosterone propionate (500 microg) during the critical window of rat development (postnatal day 5) induces temporary appearance of aged interstitial cells in developing ovaries (days 7 and 10). Aged interstitial cells showed large size (> or = 12 microm), enhanced androgen receptor (AR) and low estrogen (ER) and luteinizing hormone receptor (LHR) expression. Although normal mature interstitial cells (large size and strong ER and LHR expression) appeared later (day 14), and ovaries of androgenized rats were similar to normal ovaries between days 14 and 35, ovaries of adult androgenized females showed only aged and no mature interstitial cells. Androgenization on day 10 caused the development of aged interstitial cells on day 14, but adult ovaries were normal. Long lasting postnatal estrogenization (estradiol dipropionate for four postnatal weeks) caused in developing and adult ovaries a lack of interstitial cell development beyond the immature state. Immature interstitial cells were characterized by a small size (< or = 7 microm) and a lack of AR, ER and LHR expression. Because the critical window for steroid-induced sterility coincides with the termination of immune adaptation, we also investigated distribution of mesenchymal cells (Thy-1 mast cells and pericytes, ED1 monocyte-derived cells, CD8 T cells, and cells expressing OX-62 of dendritic cells) in developing and adult ovaries. Developing ovaries of normal, androgenized and estrogenized females were populated by similar mesenchymal cells, regardless of differences in the state of differentiation of interstitial cells. However, mesenchymal cells in adult ovaries showed distinct behavior. In normal adult ovaries, differentiation of mature interstitial cells was accompanied by differentiation of mesenchymal cells. Aged interstitial cells in ovaries of androgenized rats showed precipitous degeneration of resident mesenchymal cells. Immature interstitial cells in ovaries of estrogenized rats showed a lack of differentiation of resident mesenchymal cells. These observations indicate that an alteration of interstitial cell differentiation during immune adaptation toward the aged phenotype results in precipitous degeneration of resident mesenchymal cells and premature aging of ovaries in adult rats, and alteration toward immature phenotype results in a lack of differentiation of mesenchymal cells and permanent immaturity of ovaries in adult females.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0039-128x(01)00159-3DOI Listing

Publication Analysis

Top Keywords

interstitial cells
40
mesenchymal cells
36
cells
24
adult ovaries
20
resident mesenchymal
16
aged interstitial
16
ovaries
14
interstitial
13
interstitial cell
12
cells developing
12

Similar Publications

While changes in glomerular function and structure may herald diabetic kidney disease (DKD), many studies have underscored the significance of tubule-interstitial changes in the progression of DKD. Indeed, tubule-interstitial fibrosis may be the most important determinant of progression of DKD as in many forms of chronic glomerulopathies. The mechanisms underlying the effects of tubular changes on glomerular function in DKD have intrigued many investigators, and therefore, the signaling mechanisms underlying the cross-talk between tubular cells and glomerular cells have been the focus of investigation in many recent studies.

View Article and Find Full Text PDF

The vertebrate visual cycle hinges on enzymatically converting all--retinol (at-ROL) into 11--retinal (11c-RAL), the chromophore that binds to opsins in photoreceptors, forming light-responsive pigments. When struck by a photon, these pigments activate the phototransduction pathway and initiate the process of vision. The enzymatic isomerization of at-ROL, crucial for restoring the visual pigments and preparing them to receive new light stimuli, relies on various enzymes found in both the photoreceptors and retinal pigment epithelium cells.

View Article and Find Full Text PDF

Renal fibrosis is a common pathway involved in the progression of various chronic kidney diseases to end-stage renal disease. Recent studies show that mitochondrial injury of renal tubular epithelial cells (RTECs) is a crucial pathological foundation for renal fibrosis. However, the underlying regulatory mechanisms remain unclear.

View Article and Find Full Text PDF

Non-Canonical TERT Activity Initiates Osteogenesis in Calcific Aortic Valve Disease.

Circ Res

January 2025

Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA. (R.A.C., C.C.C., R.W., A.C., C.B., C.R., W.J.M., M.J. Bashline, A.P., A.M.P., P.B., M.J. Brown, C.S.H.).

Background: Calcific aortic valve disease is the pathological remodeling of valve leaflets. The initial steps in valve leaflet osteogenic reprogramming are not fully understood. As TERT (telomerase reverse transcriptase) overexpression primes mesenchymal stem cells to differentiate into osteoblasts, we investigated whether TERT contributes to the osteogenic reprogramming of valve interstitial cells.

View Article and Find Full Text PDF

Mechanical forces such as glomerular hyperfiltration are crucial in the pathogenesis and progression of diabetic kidney disease. Piezo2 is a mechanosensitive cation channel and plays a major role in various biological and pathophysiological phenomena. We previously reported Piezo2 expression in mouse and rat kidneys and its alteration by dehydration and hypertension.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!