A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanistic investigation of a novel vitamin B(12)-catalyzed carbon [bond] carbon bond forming reaction, the reductive dimerization of arylalkenes. | LitMetric

In the presence of catalytic vitamin B(12) and a reducing agent such as Ti(III)citrate or Zn, arylalkenes are dimerized with unusual regioselectivity forming a carbon [bond] carbon bond between the benzylic carbons of each coupling partner. Dimerization products were obtained in good to excellent yields for mono- and 1,1-disubstituted alkenes. Dienes containing one aryl alkene underwent intramolecular cyclization in good yields. However, 1,2-disubstituted and trisubstituted alkenes were unreactive. Mechanistic investigations using radical traps suggest the involvement of benzylic radicals, and the lack of diastereoselectivity in the product distribution is consistent with dimerization of two such reactive intermediates. A strong reducing agent is required for the reaction and fulfills two roles. It returns the Co(II) form of the catalyst generated after the reaction to the active Co(I) state, and by removing Co(II) it also prevents the nonproductive recombination of alkyl radicals with cob(II)alamin. The mechanism of the formation of benzylic radicals from arylalkenes and cob(I)alamin poses an interesting problem. The results with a one-electron transfer probe indicate that radical generation is not likely to involve an electron transfer. Several alternative mechanisms are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo0160470DOI Listing

Publication Analysis

Top Keywords

carbon [bond]
8
[bond] carbon
8
carbon bond
8
reducing agent
8
benzylic radicals
8
mechanistic investigation
4
investigation novel
4
novel vitamin
4
vitamin b12-catalyzed
4
carbon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!