The potent antimalarial activity of chloroquine against chloroquine-sensitive strains can be attributed, in part, to its high accumulation in the acidic environment of the heme-rich parasite food vacuole. A key component of this intraparasitic chloroquine accumulation mechanism is a weak base "ion-trapping" effect whereupon the basic drug is concentrated in the acidic food vacuole in its membrane-impermeable diprotonated form. By the incorporation of amino functionality into target artemisinin analogues, we hoped to prepare a new series of analogues that, by virtue of increased accumulation into the ferrous-rich vacuole, would display enhanced antimalarial potency. The initial part of the project focused on the preparation of piperazine-linked analogues (series 1 (7-16)). Antimalarial evaluation of these derivatives demonstrated potent activity versus both chloroquine-sensitive and chloroquine-resistant parasites. On the basis of these observations, we then set about preparing a series of C-10 carba-linked amino derivatives. Optimization of the key synthetic step using a newly developed coupling protocol provided a key intermediate, allyldeoxoartemisinin (17) in 90% yield. Further elaboration, in three steps, provided nine target C-10 carba analogues (series 2 (21-29)) in good overall yields. Antimalarial assessment demonstrated that these compounds were 4-fold more potent than artemisinin and about twice as active as artemether in vitro versus chloroquine-resistant parasites. On the basis of the products obtained from biomimetic Fe(II) degradation of the C-10 carba analogue (23), we propose that these analogues may have a mode of action subtly different from that of the parent drug artemisinin (series 1 (7-16)) and other C-10 ether derivatives such as artemether. Preliminary in vivo testing by the WHO demonstrated that four of these compounds are active orally at doses of less than 10 mg/kg. Since these analogues are available as water-soluble salts and cannot form dihydroartemisinin by P450-catalyzed oxidation, they represent useful leads that might prove to be superior to the currently used derivatives, artemether and artesunate.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm0109816DOI Listing

Publication Analysis

Top Keywords

antimalarial activity
8
food vacuole
8
analogues series
8
series 7-16
8
chloroquine-resistant parasites
8
parasites basis
8
c-10 carba
8
demonstrated compounds
8
derivatives artemether
8
analogues
7

Similar Publications

We recently characterized the potent antiplasmodial activity of the aggregated protein dye YAT2150, whose presumed mode of action is the inhibition of protein aggregation in the malaria parasite. Using single-dose and ramping methods, assays were done to select Plasmodium falciparum parasites resistant to YAT2150 concentrations ranging from 3× to 0.25× the in vitro IC of the compound (in the two-digit nM range) and performed a cross-resistance assessment in P.

View Article and Find Full Text PDF

The combination of the active compounds curcumin and piperine (CP) is effective as an antimalarial; however, the solubility and bioavailability of CP are very low. This study aims to formulate CP in nanoparticles (NP), which are then fabricated into dissolving microneedles (DMN). The NPs were prepared with a concentration ratio of CP-Chitosan-So.

View Article and Find Full Text PDF

Background: Glucocorticoids are frequently employed in systemic lupus erythematosus (SLE) patients and play a critical role in the induction therapy of lupus nephritis (LN), despite their many side effects, including steroid-induced diabetes (SID). Information regarding SID in SLE patients is quite scant.

Purpose: The aim of this study was to determine risk factors associated with the development of SID in patients with LN.

View Article and Find Full Text PDF

Factors influencing therapeutic efficacy of denosumab against osteoporosis in systemic lupus erythematosus.

Lupus Sci Med

January 2025

Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Objective: Osteoporosis is a common comorbidity in patients with SLE, and bone loss in patients with SLE has a multifactorial aetiology. This study aimed to evaluate the therapeutic efficacy of denosumab in patients with SLE with osteoporosis and to analyse the factors influencing therapeutic efficacy.

Methods: A total of 166 patients with SLE with osteoporosis who initiated denosumab between January 2016 and December 2023 were included.

View Article and Find Full Text PDF

Artesunate-multiple pharmacological effects beyond treating malaria.

Eur J Med Chem

January 2025

Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, China. Electronic address:

Artesunate, a semisynthetic derivative of artemisinin, is not only recommended as the first-line drug for treating severe malaria but is also a significant member of Artemisinin-based Combination Therapies (ACTs), used in combination with other artemisinin derivatives for treating uncomplicated malaria. Beyond its potent anti-malarial activity, artesunate has garnered considerable attention for its pharmacological effects, which encompass broad-spectrum anti-tumor, anti-viral, and anti-inflammatory properties. It has collectively demonstrated superior drug tolerance, low toxicity, and mild side effects in cell line experiments in vitro, experimental animal models, and clinical drug researches, as a monotherapy or in combination with other agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!