Chronic anthracycline administration to rabbits causes impairment of cardiac contractility and decreased gene expression of the calcium-induced calcium release channel of sarcoplasmic reticulum (SR), the ryanodine receptor (RYR2). The C-13 hydroxy metabolite (doxorubicinol), formed in the heart, has been hypothesized to contribute to anthracycline cardiotoxicity. C-13 deoxydoxorubicin is an analog unable to form the C-13 hydroxy metabolite. Therefore, doxorubicin, C-13 deoxydoxorubicin, or saline was administered to rabbits (1 mg/kg iv twice weekly for 8 weeks). Left ventricular fractional shortening (LVFS) was decreased by chronic treatment with doxorubicin (28 +/- 2%; P < 0.05), but not C-13 deoxydoxorubicin (33 +/- 2%) compared to age-matched pair-fed controls. Doxorubicin, but not C-13 deoxydoxorubicin, caused a significant reduction (P < 0.02) in the ratio of RYR2/Ca-Mg ATPase (SERCA2) mRNA levels (0.57 +/- 0.1 vs 1.22 +/- 0.2, respectively) in the left ventricle. This suggests that doxorubicinol may contribute to the downregulation of cardiac RYR2 expression in chronic doxorubicin cardiotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1006/bbrc.2002.6380DOI Listing

Publication Analysis

Top Keywords

c-13 deoxydoxorubicin
20
doxorubicin c-13
12
ryanodine receptor
8
gene expression
8
expression chronic
8
c-13 hydroxy
8
hydroxy metabolite
8
c-13
6
doxorubicin
5
deoxydoxorubicin
5

Similar Publications

Chronic anthracycline administration to rabbits causes impairment of cardiac contractility and decreased gene expression of the calcium-induced calcium release channel of sarcoplasmic reticulum (SR), the ryanodine receptor (RYR2). The C-13 hydroxy metabolite (doxorubicinol), formed in the heart, has been hypothesized to contribute to anthracycline cardiotoxicity. C-13 deoxydoxorubicin is an analog unable to form the C-13 hydroxy metabolite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!