Sandia octahedral molecular sieves (SOMS) is an isostructural, variable composition class of ion exchangers with the general formula Na(2)Nb(2-x)M(IV)(x)O (6-x)(OH)(x).H(2)O (M(IV) = Ti, Zr; x = 0.04-0.40) where up to 20% of the framework Nb(V) can be substituted with Ti(IV) or Zr(IV). This class of molecular sieves is easily converted to perovskite through low-temperature heat treatment (500-600 degrees C). This report provides a detailed account of how the charge imbalance of this Nb(V)-M(IV) substitution is compensated. X-ray powder diffraction with Rietveld refinement, infrared spectroscopy, thermogravimetric analysis, (23)Na MAS NMR, and (1)H MAS NMR were used to determine how the framework anionic charge is cation-balanced over a range of framework compositions. All spectroscopic evidence indicated a proton addition for each M(IV) substitution. Evidences for variable proton content included (1) increasing OH observed by (1)H MAS NMR with increasing M(IV) substitution, (2) increased infrared band broadening indicating increased H-bonding with increasing M(IV) substitution, (3) increased TGA weight loss (due to increased OH content) with increasing M(IV) substitution, (4) no variance in population on the sodium sites (indicated by Rietveld refinement) with variable composition, and (5) no change in the (23)Na MAS NMR spectra with variable composition. Also observed by infrared spectroscopy and (23)Na MAS NMR was increased disorder on the Nb(V)/M(IV) framework sites with increasing M(IV) substitution, evidenced by broadening of these spectral features. These spectroscopic studies, along with ion exchange experiments, also revealed the effect of the Nb(V)/M(IV) framework substitution on materials properties. Namely, the temperature of conversion to NaNb(1-x)M(IV)(x)O(3) (M = Ti, Zr) perovskite increased with increasing Ti in the framework and decreased with increasing Zr in the framework. This suggested that Ti stabilizes the SOMS framework and Zr destabilizes the SOMS framework. Finally, comparing ion exchange properties of a SOMS material with minimal (2%) Ti to a SOMS material with maximum (20%) Ti revealed the divalent cation selectivity of these materials which was reported previously is a function of the M(IV) substitution in the framework. A thorough investigation of this class of SOMS materials has revealed the importance of understanding the influence of heterovalent substitutions in microporous frameworks on material properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja017081z | DOI Listing |
Anim Reprod
March 2024
Laboratório de Fertilização in Vitro, Instituto de Ciências Biológicas - ICB, Universidade Federal do Pará - UFPA, Belém, PA, Brasil.
One of the crucial aspects to be considered for successful in vitro production (IVP) of embryos is the composition of the various media used throughout the stages of this reproductive biotechnology. The cell culture media employed should fulfill the metabolic requirements of both gametes during oocyte maturation and sperm development, as well as the embryo during its initial cell divisions. Most IVP protocols incorporate blood serum into the media composition as a source of hormones, proteins, growth factors, and nutrients.
View Article and Find Full Text PDFSmall
March 2024
State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, China.
Structural dissymmetry and strong second-harmonic generation (SHG) responses are key conditions for nonlinear optical (NLO) crystals, and targeted combinatorial screening of suitable anionic groups has become extremely effective. Herein, optimal combination of flexible SnS (n = 5, 6) groups and highly electropositive cations (lanthanides (Ln ) and alkaline earth (Ae : Sr, Ca) metals) affords the successful synthesis of 12 NLO thiostannates including Ln Sr Sn S (Pmc2 ) and Ln Ca Sn S (P-62m); whereas 17 rigid GeS or SiS tetrahedra-constructed Ln Ae Ge S and Ln Ae Si S crystallize in the centrosymmetric (CS) Pnma. This unprecedented CS to noncentrosymmetric (NCS) structural transformation (Pnma to P-62m to Pmc2 ) in the Ln Ae M S family indicates that chemical substitution of the tetrahedral GeS /SiS units with SnS breaks the original symmetry to form the requisite NCS structures.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
October 2023
Department of Chemistry, Sacred Heart College (Autonomous), Tirupattur 635 601, Tamil Nadu, India. Electronic address:
A novel keggin-type tetra-metalates substituted polyoxometalate was functionalized by 3-(aminopropyl)-imidazole (3-API) supporting a ligand substitution method. In this paper, polyoxometalate (POMs) (NH) [PMoO] and transition metal substituted of (NH) [{PMMoO}.(HO)] (M = Mn, V) are used as one of the adsorbents.
View Article and Find Full Text PDFDalton Trans
June 2023
Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
We report the synthesis and characterisation of a series of M(IV) substituted cyclopentadienyl hypersilanide complexes of the general formula [M(Cp){Si(SiMe)}(X)] (M = Hf, Th; Cp = Cp', {CH(SiMe)} or Cp'', {CH(SiMe)-1,3}; X = Cl, CH). The separate salt metathesis reactions of [M(Cp)(Cl)] (M = Zr or Hf, Cp = Cp'; M = Hf or Th, Cp = Cp'') with equimolar K{Si(SiMe)} gave the respective mono-silanide complexes [M(Cp'){Si(SiMe)}(Cl)] (M = Zr, 1; Hf, 2), [Hf(Cp'')(Cp'){Si(SiMe)}(Cl)] (3) and [Th(Cp''){Si(SiMe)}(Cl)] (4), with only a trace amount of 3 presumably formed silatropic and sigmatropic shifts; the synthesis of 1 from [Zr(Cp')(Cl)] and Li{Si(SiMe)} has been reported previously. The salt elimination reaction of 2 with one equivalent of allylmagnesium chloride gave [Hf(Cp'){Si(SiMe)}(η-CH)] (5), whilst the corresponding reaction of 2 with equimolar benzyl potassium yielded [Hf(Cp')(CHPh)] (6) together with a mixture of other products, with elimination of both KCl and K{Si(SiMe)}.
View Article and Find Full Text PDFQuaternary chalcogenide semiconductors are promising materials for energy conversion and nonlinear optical applications, with properties tunable primarily by varying the elemental composition and crystal structure. Here, we first analyze the connections among several cubic crystal structure types, as well as the orthorhombic AgPbGeS-type structure, reported for select members within the Ag-B-M-X (B = Sr, Pb; M = Si, Ge, Sn; X = S, Se) compositional space. Focusing on the Ag-Pb-Si-S and Ag-Sr-Sn-S systems, we show that one structure type, with the formulas AgPbSiS and AgSrSnS, is favored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!