Analysis of self-assembly and apatite binding properties of amelogenin proteins lacking the hydrophilic C-terminal.

Matrix Biol

Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA.

Published: March 2002

Amelogenins, the major protein component of the mineralizing enamel extracellular matrix, are critical for normal enamel formation as documented in the linkage studies of a group of inherited disorders, with defective enamel formation, called Amelogenesis imperfecta. Recent cases of Amelogenesis imperfecta include mutations that resulted in truncated amelogenin protein lacking the hydrophilic C-terminal amino acids. Current advances in knowledge on amelogenin structure, nanospheres assembly and their effects on crystal growth have supported the hypothesis that amelogenin nanospheres provide the organized microstructure for the initiation and modulated growth of enamel apatite crystals. In order to evaluate the function of the conserved hydrophilic C-terminal telopeptide during enamel biomineralization, the present study was designed to analyze the self-assembly and apatite binding behavior of amelogenin proteins and their isoforms lacking the hydrophilic C-terminal. We applied dynamic light scattering to investigate the size distribution of amelogenin nanospheres formed by a series of native and recombinant proteins. In addition, the apatite binding properties of these amelogenins were examined using commercially available hydroxyapatite crystals. Amelogenins lacking the carboxy-terminal (native P161 and recombinant rM166) formed larger nanospheres than those formed by their full-length precursors: native P173 and recombinant rM179. These data suggest that after removal of the hydrophilic carboxy-terminal segment further association of the nanospheres takes place through hydrophobic interactions. The affinity of amelogenins lacking the carboxy-terminal regions to apatite crystals was significantly lower than their parent amelogenins. These structure-functional analyses suggest that the hydrophilic carboxy-terminal plays critical functional roles in mineralization of enamel and that the lack of this segment causes abnormal mineralization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0945-053x(01)00190-1DOI Listing

Publication Analysis

Top Keywords

hydrophilic c-terminal
16
apatite binding
12
lacking hydrophilic
12
self-assembly apatite
8
binding properties
8
amelogenin proteins
8
enamel formation
8
amelogenesis imperfecta
8
amelogenin nanospheres
8
apatite crystals
8

Similar Publications

Polar Networks Mediate Ion Conduction of the SARS-CoV-2 Envelope Protein.

J Am Chem Soc

January 2025

Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.

The SARS-CoV-2 E protein conducts cations across the cell membrane to cause pathogenicity to infected cells. The high-resolution structures of the E transmembrane domain (ETM) in the closed state at neutral pH and in the open state at acidic pH have been determined. However, the ion conduction mechanism remains elusive.

View Article and Find Full Text PDF

Among the many ice-binding proteins (IBPs) found in microorganisms (bacteria, archaea, fungi and algae), the canonical DUF3494 beta-barrel type is the most common. Until now, little variation has been found in this structure: an initial coil leads into an alpha helix that directs the following coils into a reverse stack, with the final coil ending up next to the initial coil. Here, I show that there exist many bacterial proteins whose AlphaFold-predicted structures deviate from the DUF3494 structure so that they are not recognized as belonging to an existing DUF or Pfam family.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on Trypanosoma brucei, a parasitic protozoan, specifically examining the tripartite attachment complex (TAC) that links its mitochondrial genome to the flagellum's basal body.
  • - Central to the TAC is the interaction between the outer membrane protein TAC60 and the inner membrane protein p166, which is essential for proper mitochondrial genome segregation during cell division.
  • - Researchers used various analytical techniques to identify that the binding between TAC60 and p166 is mainly driven by hydrophobic interactions rather than electrostatic ones, revealing important structural details of this contact site.
View Article and Find Full Text PDF

The proper folding of multispanning membrane proteins (MPs) hinges on the accurate insertion of their transmembrane helices (TMs) into the membrane. Predominantly, TMs are inserted during protein translation, via a conserved mechanism centered around the Sec translocon. Our study reveals that the C-terminal TMs (cTMs) of numerous MPs across various organisms bypass this cotranslational route, necessitating an alternative posttranslational insertion strategy.

View Article and Find Full Text PDF

Deciphering the Monomeric and Dimeric Conformational Landscapes of the Full-Length TDP-43 and the Impact of the C-Terminal Domain.

ACS Chem Neurosci

December 2024

Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India.

The aberrant aggregation of TAR DNA-binding protein 43 kDa (TDP-43) in cells leads to the pathogenesis of multiple fatal neurodegenerative diseases. Decoding the proposed initial transition between its functional dimeric and aggregation-prone monomeric states can potentially design a viable therapeutic strategy, which is presently limited by the lack of structural detail of the full-length TDP-43. To achieve a complete understanding of such a delicate phase space, we employed a multiscale simulation approach that unearths numerous crucial features, broadly summarized in two categories: (1) state-independent features that involve inherent chain collapsibility, rugged polymorphic landscape dictated by the terminal domains, high β-sheet propensity, structural integrity preserved by backbone-based intrachain hydrogen bonds and electrostatic forces, the prominence of the C-terminal domain in the intrachain cross-domain interfaces, and equal participation of hydrophobic and hydrophilic (charged and polar) residues in cross-domain interfaces; and (2) dimerization-modulated characteristics that encompass slower collapsing dynamics, restricted polymorphic landscape, the dominance of side chains in interchain hydrogen bonds, the appearance of the N-terminal domain in the dimer interface, and the prominence of hydrophilic (specifically polar) residues in interchain homo- and cross-domain interfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!