The generation of polarity and patterning in multicellular organisms depends in part on the asymmetric localization of molecules to specific subdomains within a cell. Localized transcripts for several molecules are known to be required for patterning oocytes and embryos in Drosophila as well as Caenorhabditis elegans. Here, we describe the localization of transcripts encoding the nodal-related morphogen, Squint (sqt), in zebrafish oocytes and early embryos, and the mechanisms by which sqt RNA is localized. sqt transcripts are uniformly distributed in oocytes through all stages of oogenesis. Upon egg activation, sqt RNA is localized to the blastoderm, and excluded from the yolk cell. The mechanism of sqt RNA transport was examined using cytoskeletal inhibitors. Disruption of actin microfilaments by treatment with latrunculin A does not alter the localization of sqt RNA to the blastoderm. However, disruption of the microtubule cytoskeleton by treatment with nocodazole affects sqt RNA localization. These results indicate that sqt transcripts are translocated by an RNA localization pathway which is initiated upon egg activation, and that sqt RNA localization through this pathway is mediated via the microtubule cytoskeleton.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0925-4773(01)00622-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!