Mitochondrial contributions to tissue damage in stroke.

Neurochem Int

Department of Medical Biochemistry, Center for Neuroscience, School of Medicine, Flinders Medical Research Institute, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001, Australia.

Published: May 2002

Tissue infarction, involving death of essentially all cells within a part of the brain, is a common pathology resulting from stroke and an important determinant of the long-term consequences of this disorder. The cell death that leads to infarct formation is likely to be the result of multiple interacting pathological processes. A range of factors, including the severity of the ischemic insult and whether this is permanent or reversed, determine which mechanisms predominate. Although evaluating mitochondrial properties in intact brain is difficult, evidence for several potentially deleterious responses to cerebral ischemia or post-ischemic reperfusion have been obtained from investigations using animal models of stroke. Marked changes in ATP and related energy metabolites develop quickly in response to occlusion of a cerebral artery, as expected from limitations in the delivery of oxygen and glucose. However, these alterations are often only partially reversed on reperfusion despite improved substrate delivery. Ischemia-induced decreases in the mitochondrial capacity for respiratory activity probably contribute to the ongoing impairment of energy metabolism during reperfusion and possibly also to the magnitude of changes seen during ischemia. Conditions during reperfusion are likely to be conducive to the induction of the permeability transition in mitochondria. There are as yet no well-characterized techniques to identify this change in the intact brain. However, the protective effects of some agents that block formation of the transition pore are consistent with both the induction of the permeability transition during early recirculation and a role for this in the development of tissue damage. Release of cytochrome c into the cytoplasm of cells has been observed with both permanent and reversed ischemia and could trigger the death of some cells by apoptosis, a process which probably contributes to the expansion of the ischemic lesion. Mitochondria are also likely to contribute to the widely-accepted role of nitric oxide in the development of ischemic damage. These organelles are a probable target for the deleterious effects of this substance and can also act as a source of superoxide for reaction with the nitric oxide to produce the damaging species, peroxynitrite. Further characterization of these mitochondrial responses should help to elucidate the mechanisms of cell death due to cerebral ischemia and possibly point to novel sites for therapeutic interventions in stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0197-0186(01)00122-xDOI Listing

Publication Analysis

Top Keywords

tissue damage
8
cell death
8
permanent reversed
8
intact brain
8
cerebral ischemia
8
induction permeability
8
permeability transition
8
nitric oxide
8
mitochondrial
4
mitochondrial contributions
4

Similar Publications

Abdominal aortic aneurysm (AAA) is a severe cardiovascular disease (CVD) that is partly attributable to endothelial dysfunction, inflammatory response, and angiogenesis. G protein-coupled receptor 4 (GPR4), a proton-sensitive G protein-coupled receptor that is abundantly expressed in vascular endothelial cells, has been associated with numerous physiological functions. Nevertheless, its potential involvement in the development of AAA remains unexplored.

View Article and Find Full Text PDF

Role of antioxidative stress activity of Fucoxanthin nanoparticle as hepatoprotective in diabetic rats.

Pak J Pharm Sci

January 2025

Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga, University, Surabaya, Indonesia.

This study attempts to prove that the antioxidant effect of fucoxanthin nanoparticles can prevent streptozotocin-induced rat liver damage. Fucoxanthin nanoparticles are synthesized using the high-energy ball milling method. Dynamic Light Scattering (DLS) was then used to describe the sizes of the fucoxanthin nanoparticles.

View Article and Find Full Text PDF

Objective To investigate the effects and molecular mechanism of Homer protein homolog 1a (Homer 1a) overexpression on nerve injury in mice with traumatic brain injury (TBI). Methods Sixty male C57BL/6 mice were randomly divided into five groups: sham group, TBI group, empty lentivirus (Lv-NC) group, Homer 1a overexpression lentivirus (Lv-Homer 1a) group and Lv-Homer 1a + 740 Y-P group, with 12 mice in each group. The lentivirus was orthotopic injected into the cerebral cortex of mice 5 d before modeling, while 740 Y-P was injected intraperitoneally 1 d before modeling.

View Article and Find Full Text PDF

Epigenetic regulation and post-translational modifications of ferroptosis-related factors in cardiovascular diseases.

Clin Epigenetics

January 2025

Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, People's Republic of China.

As an important element of the human body, iron participates in numerous physiological and biochemical reactions. In the past decade, ferroptosis (a form of iron-dependent regulated cell death) has been reported to contribute to the pathogenesis and progression of various diseases. The stability of iron in cardiomyocytes is crucial for the maintenance of normal physiological cardiac activity.

View Article and Find Full Text PDF

Objective: Cervical cancer is a common malignancy among women, and radiotherapy remains a primary treatment modality across all disease stages. However, resistance to radiotherapy frequently results in treatment failure, highlighting the need to identify novel therapeutic targets to improve clinical outcomes.

Methods: The expression of molecule interacting with CasL-2 (MICAL2) was confirmed in cervical cancer tissues and cell lines through western blotting (WB) and immunohistochemistry (IHC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!