Control of charge-transfer-induced spin transition temperature on cobalt-iron Prussian blue analogues.

Inorg Chem

Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguroku, Tokyo 153-8904, Japan.

Published: February 2002

The electronic and spin states of a series of Co-Fe Prussian blue analogues containing Na(+) ion in the lattice, Na(x)()Co(y)()Fe(CN)(6) x zH(2)O, strongly depended on the atomic composition ratio of Co to Fe (Co/Fe) and temperature. Compounds of Co/Fe = 1.5 and 1.15 consisted mostly of the Fe(III)(t(2g)(5)e(g)(0), LS, S = 1/2)-CN-Co(II)(t(2g)(5)e(g)(2), HS, S = 3/2) site and the Fe(II)(t(2g)(6)e(g)(0), LS, S = 0)-CN-Co(III)(t(2g)(6)e(g)(0), LS, S = 0) site, respectively, over the entire temperature region from 5 to 350 K. Conversely, compounds of Co/Fe = 1.37, 1.32, and 1.26 showed a change in their electronic and spin states depending on the temperature. These compounds consisted mainly of the Fe(III)-CN-Co(II) site (HT phase) around room temperature but turned to the state consisting mainly of the Fe(II)-CN-Co(III) site (LT phase) at low temperatures. This charge-transfer-induced spin transition (CTIST) phenomenon occurred reversibly with a large thermal hysteresis of about 40 K. The CTIST temperature (T(1/2) = (T(1/2) descending + T(1/2) ascending)/2) increased from 200 to 280 K with decreasing Co/Fe from 1.37 to 1.26. Furthermore, by light illumination at 5 K, the LT phase of compounds of Co/Fe = 1.37, 1.32, and 1.26 was converted to the HT phase, and the relaxation temperature from this photoproduced HT phase also strongly depended on the Co/Fe ratio; 145 K for Co/Fe = 1.37, 125 K for Co/Fe = 1.32, and 110 K for Co/Fe = 1.26. All these phenomena are explained by a simple model using potential energy curves of the LT and HT phases. The energy difference of two phases is determined by the ligand field strength around Co(II) ions, which can be controlled by Co/Fe.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic010915uDOI Listing

Publication Analysis

Top Keywords

co/fe 137
16
compounds co/fe
12
co/fe
10
charge-transfer-induced spin
8
spin transition
8
prussian blue
8
blue analogues
8
electronic spin
8
spin states
8
temperature compounds
8

Similar Publications

Anchoring single metal atom to carbon supports represents an exceptionally effective strategy to maximize the efficiency of catalysts. Recently, dual-atom catalysts (DACs) emerge as an intriguing candidate for atomic catalysts, which perform better than single-atom catalysts (SACs). However, the clarification of the polynary single-atom structures and their beneficial effects remains a daunting challenge.

View Article and Find Full Text PDF

Seawater splitting represents an inexpensive and attractive route for producing hydrogen, which does not require a desalination process. Highly active and durable electrocatalysts are required to sustain seawater splitting. Herein we report the phosphidation-based synthesis of a cobalt-iron-phosphate ((Co,Fe)PO) electrocatalyst for hydrogen evolution reaction (HER) toward alkaline seawater splitting.

View Article and Find Full Text PDF

Public health implications of heavy metals in foods and drinking water in Ethiopia (2016 to 2020): systematic review.

BMC Public Health

November 2021

Department of Environmental Health, College of Health and Medical Science, Haramaya University, Harar, Ethiopia.

Background: Besides their benefits, heavy metals are toxic, persistent, and hazardous to human health, even at their lower concentrations. Consumption of unsafe concentrations of food contaminated with heavy metals may lead to the disruption of numerous biological and biochemical processes in the human body. In developing country including Ethiopia, where untreated or partially treated wastewater is used for agricultural purposes, the problems related to the consumption foods contaminated with heavy metals may poses highest risk to human health.

View Article and Find Full Text PDF

The local structure within the Co-Fe atomic array of the photoswitchable coordination polymer magnet, K0.3Co[Fe(CN)6]0.77·nH2O, is directly observed during charge transfer induced spin transition (CTIST), a solid-solid phase change, using high-resolution transmission electron microscopy (HRTEM).

View Article and Find Full Text PDF

Four cubic zirconium-porphyrin frameworks, CPM-99(H2, Zn, Co, Fe), were synthesized by a molecular-configuration-guided strategy. Augmentation of meso-substituted side arms (with double-torsional biphenyl rings) of tetratopic porphyrin linkers leads to a successful implementation of zirconium-carboxylate frameworks with cubic 2.5 nm cage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!