Natural coral graft substitutes are derived from the exoskeleton of marine madreporic corals. Researchers first started evaluating corals as potential bone graft substitutes in the early 1970s in animals and in 1979 in humans. The structure of the commonly used coral, Porites, is similar to that of cancellous bone and its initial mechanical properties resemble those of bone. The exoskeleton of these high content calcium carbonate scaffolds has since been shown to be biocompatible, osteoconductive, and biodegradable at variable rates depending on the exoskeleton porosity, the implantation site and the species. Although not osteoinductive or osteogenic, coral grafts act as an adequate carrier for growth factors and allow cell attachment, growth, spreading and differentiation. When applied appropriately and when selected to match the resorption rate with the bone formation rate of the implantation site, natural coral exoskeletons have been found to be impressive bone graft substitutes. The purpose of this article is to review and summarize all the pertinent work that has been published on natural coral as a bone graft including in vitro, animal and clinical human studies. Preliminary report of our own experiments as well as our recommendations on the use of coral are also included.
Download full-text PDF |
Source |
---|
Genome Biol Evol
January 2025
Island Evolution Laboratory, Marine Laboratory, University of Guam, Mangilao, GU 96923, USA.
Population structure provides essential information for developing meaningful conservation plans. This is especially important in remote places, such as oceanic islands, where limited population sizes and genetic isolation can make populations more susceptible and self-dependent. In this study, we assess and compare the relatedness, population genetics and molecular ecology of two sympatric Acropora species, A.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biology, Boston University, Boston, MA, USA.
Spatial changes in benthic community structure have been observed across natural gradients in deep-sea ecosystems, but these patterns remain under-sampled on seamounts. Here, we identify the spatial composition and distribution of coral and sponge taxa on four sides of a single central Pacific equatorial "model" seamount within the US EEZ surrounding the Howland and Baker unit of the Pacific Islands Heritage Marine National Monument. This seamount rises from 5,000 + m to mesophotic depths of 196 m, and is influenced by the Equatorial Undercurrent.
View Article and Find Full Text PDFMicrobiome
January 2025
Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
Background: Seawater microbes (bacteria and archaea) play essential roles in coral reefs by facilitating nutrient cycling, energy transfer, and overall reef ecosystem functioning. However, environmental disturbances such as degraded water quality and marine heatwaves, can impact these vital functions as seawater microbial communities experience notable shifts in composition and function when exposed to stressors. This sensitivity highlights the potential of seawater microbes to be used as indicators of reef health.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, Utah 84112, United States.
Soft corals are prolific producers of terpenoids, such as pseudopterosins. The exact biosynthetic pathway of these anti-inflammatory diterpene glycosides has eluded the scientific community for decades. Using a forward genetic approach, we have identified, cloned, and expressed the key genes involved in pseudopterosin biosynthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!