Functional control of the binuclear metal site in the metallo-beta-lactamase-like fold by subtle amino acid replacements.

Protein Sci

Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, APT 127, 2780-156 Oeiras, Portugal.

Published: March 2002

At present there are three protein families that share a common structural domain, the alphabeta/betaalpha fold of class B beta-lactamases: zinc beta-lactamases, glyoxalases II, and A-type flavoproteins. A detailed inspection of their superimposed structures was undertaken and showed that although these proteins contain binuclear metal sites in spatially equivalent positions, there are some subtle differences within the first ligand sphere that determine a distinct composition of metals. Although zinc beta-lactamases contain either a mono or a di-zinc center, the catalytically active form of glyoxalase II contains a mixed iron-zinc binuclear center, whereas A-type flavoproteins contain a di-iron site. These variations on the type of metal site found within a common fold are correlated with the subtle variations in the nature of the ligating amino acid residues and are discussed in terms of the different reactions catalyzed by each of the protein families. Correlation of these observations with sequence data results in the definition of a sequence motif that comprises the possible binuclear metal site ligands in this broad family. The evolution of the proteins sharing this common fold and factors modulating reactivity are also discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2373467PMC
http://dx.doi.org/10.1110/ps.31202DOI Listing

Publication Analysis

Top Keywords

binuclear metal
12
metal site
12
amino acid
8
protein families
8
zinc beta-lactamases
8
a-type flavoproteins
8
common fold
8
functional control
4
binuclear
4
control binuclear
4

Similar Publications

Binuclear silver(I) and copper(I) complexes, and , with bridging diphenylphosphine ligands were prepared. In , the silver(I) center is located inside a trigonal plane composed of three phosphorus donors from three separate and bridging dppm ligands. The fourth coordination site is filled with neighboring silver(I) ions.

View Article and Find Full Text PDF

The cocrystal (or supramolecular complex) between the Cu(II) complex of salicylic acid and uncoordinated piracetam has been synthesized. Its structure is characterized by elemental analysis, FT-IR, UV-Vis spectroscopy, and X-ray crystallography. Spectroscopic methods confirm the formation of the metal complex, while X-ray crystallography establishes the molecular and crystal structure of the obtained compound.

View Article and Find Full Text PDF

A series of colorful binuclear Schiff bases derived from the different diamine bridges including 1,2- ethylenediamine (bis-Et-SA, bis-Et-4-NEt, bis-Et-5-NO, bis-Et-Naph), 1,2-phenylenediamine (bis-Ph-SA, bis-Ph-4-NEt, bis-Ph-5-NO, bis-Ph-Naph), dicyano-1,2-ethenediamine (bis-CN-SA, bis-CN-4-NEt, bis-CN-5-NO, bis-CN-Naph) have been designed and prepared. The optical properties of these binuclear Schiff base ligands were fully determined by UV-Vis absorption spectroscopy, fluorescence emission spectroscopy, and time-dependent-density functional theory (TD-DFT) calculations. The inclusion of D-A systems and/or π-extended systems in these binuclear Schiff base ligands not only enables adjustable RGB light absorption and emission spectra (300~700 nm) but also yields high fluorescence quantum efficiencies of up to 0.

View Article and Find Full Text PDF

The discovery of new structures is very important for metal-organic framework (MOF) adsorbents and their application in gas separation, where the design of ligands and the selection of metal ions play a decisive role. Herein, we synthesized two isoreticular Zn-MOFs, UPC-250 and UPC-251, composed of imidazole-based tricarboxylic acid ligands and binuclear zinc clusters. The pore environment was regulated via modifying fluorine atoms at different positions of ligands, and one-step purification of ethylene from acetylene/ethylene/ethane ternary mixture was realized in UPC-251.

View Article and Find Full Text PDF

Leishmaniasis is a neglected disease that remains with a limited number of drugs available for chemotherapy and has an increased drug resistance that affects treatment outcomes. Metal-based drugs such as cyclopalladated complex [Pd(dmba)(μ-N)] (CP2), a Leishmania topoisomerase IB inhibitor involved in calcium dysregulation and mitochondrial dysfunction of the parasite, had been an alternative to outline the appearance of chemoresistance. To identify new molecular targets and point out possible resistance mechanisms, a CP2-resistant Leishmania amazonensis (LaR) was selected by stepwise exposure to increasing drug pressure until a line capable of growth in 13.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!