Molecular identity and regulation of renal potassium channels.

Jpn J Physiol

Groupe de recherche en transport membranaire, Department of Physiology, Université de Montréal, Montréal, QC, H3C3J7, Canada.

Published: December 2001

K channels are ubiquitous in animal cells, where they are involved in a variety of physiological functions. In epithelial cells of the kidney, K channels are primarily involved in maintaining membrane potential, recycling and secreting K and regulating cell volume. As many renal K channels have now been studied or identified at the molecular level by means of a variety of approaches, including patch-clamp recordings, cDNA cloning and immunohistochemistry, the purpose of this review is to summarize what is presently known about the molecular identity of renal K channels with an emphasis on their regulatory properties.

Download full-text PDF

Source
http://dx.doi.org/10.2170/jjphysiol.51.631DOI Listing

Publication Analysis

Top Keywords

molecular identity
8
renal channels
8
channels
5
identity regulation
4
regulation renal
4
renal potassium
4
potassium channels
4
channels channels
4
channels ubiquitous
4
ubiquitous animal
4

Similar Publications

Classification of Breast Cancer Through the Perspective of Cell Identity Models.

Adv Exp Med Biol

January 2025

INSERM, Bergonie Cancer Institute, University of Bordeaux, Bordeaux, France.

The mammary epithelium has an inner luminal layer that contains estrogen receptor (ER)-positive hormone-sensing cells and ER-negative alveolar/secretory cells, and an outer basal layer that contains myoepithelial/stem cells. Most human tumours resemble either hormone-sensing cells or alveolar/secretory cells. The most widely used molecular classification, the Intrinsic classification, assigns hormone-sensing tumours to Luminal A/B and human epidermal growth factor 2-enriched (HER2E)/molecular apocrine (MA)/luminal androgen receptor (LAR)-positive classes, and alveolar/secretory tumours to the Basal-like class.

View Article and Find Full Text PDF

Integrating machine learning, suspect and nontarget screening reveal the interpretable fates of micropollutants and their transformation products in sludge.

J Hazard Mater

January 2025

School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Electronic address:

Activated sludge enriches vast amounts of micropollutants (MPs) when wastewater is treated, posing potential environmental risks. While standard methods typically focus on target analysis of known compounds, the identity, structure, and concentration of transformation products (TPs) of MPs remain less understood. Here, we employed a novel approach that integrates machine learning for the quantification of nontarget TPs with advanced target, suspect, and nontarget screening strategies.

View Article and Find Full Text PDF

Macrolide resistance due to (55).

Microbiol Spectr

January 2025

Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, Saskatchewan, Canada.

Unlabelled: Antimicrobial resistance (AMR) is a global threat. The identification and characterization of novel resistance genes is integral to AMR surveillance. The (55) gene was originally identified through whole genome sequencing of macrolide-resistant strains of .

View Article and Find Full Text PDF

Modular organization of enhancer network provides transcriptional robustness in mammalian development.

Nucleic Acids Res

January 2025

State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang'an South Road, Xiamen, Fujian 361102, China.

Enhancer clusters, pivotal in mammalian development and diseases, can organize as enhancer networks to control cell identity and disease genes; however, the underlying mechanism remains largely unexplored. Here, we introduce eNet 2.0, a comprehensive tool for enhancer networks analysis during development and diseases based on single-cell chromatin accessibility data.

View Article and Find Full Text PDF

Type III clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems (type III CRISPR-Cas systems) use guide RNAs to recognize RNA transcripts of foreign genetic elements, which triggers the generation of cyclic oligoadenylate (cOA) second messengers by the Cas10 subunit of the type III effector complex. In turn, cOAs bind and activate ancillary effector proteins to reinforce the host immune response. Type III systems utilize distinct cOAs, including cyclic tri- (cA3), tetra- (cA4) and hexa-adenylates (cA6).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!