14N chemical shifts and quadrupole coupling constants of inorganic nitrates.

J Magn Reson

Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019-3051, USA.

Published: February 2002

The isotropic chemical shift and the nuclear quadrupole coupling constant for (14)N were obtained for 14 inorganic nitrates by solid-state MAS NMR measurements at two different field strengths, 9.4 and 11.7 T. The compounds studied were polycrystalline powders of AgNO(3), Al(NO(3))(3), Ba(NO(3))(2), Ca(NO(3))(2), CsNO(3), KNO(3), LiNO(3), Mg(NO(3))(2), NaNO(3), Pb(NO(3))(2), RbNO(3), Sr(NO(3))(2), Th(NO(3))(4)center dot4H(2)O, and UO(2)(NO(3))(2)center dot3H(2)O. Even though the spectra show broadening due to (14)N quadrupole interactions, linewidths of a few hundred hertz and a good signal-to-noise ratio were achieved. From the position of the central peaks at the two fields, the chemical shifts and the nuclear quadrupole coupling constants were calculated. The chemical shifts for all compounds studied range from 282 to 342 ppm with respect to NH(4)Cl. The nuclear quadrupole coupling constants range from 429 kHz for AgNO(3) to 993 kHz for LiNO(3). These data are compared with those available in the literature.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmre.2001.2490DOI Listing

Publication Analysis

Top Keywords

quadrupole coupling
16
chemical shifts
12
coupling constants
12
nuclear quadrupole
12
inorganic nitrates
8
compounds studied
8
quadrupole
5
14n chemical
4
shifts quadrupole
4
coupling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!