Transcription attenuation associated with bacterial repetitive extragenic BIME elements.

J Mol Biol

Centre de Génétique Moléculaire du CNRS, Centre National de la Recherche Scientifique, Gif-sur-Yvette Cedex, F-91198, France.

Published: November 2001

Transcription attenuation comprises several processes that affect transcript elongation and transcription termination, and has an important role in regulating gene expression. In most cases, transcription attenuation is used as a regulatory mechanism that allows the cell to adjust protein synthesis levels in response to a specific signal. Here, by using a tRNA gene as a transcriptional reporter, we characterize a new type of transcription attenuation mechanism in Escherichia coli that involves bacterial interspersed mosaic elements (BIMEs), the main family of repetitive extragenic elements. The transcription termination factor Rho is required for attenuation in association with BIMEs, thus revealing a new role for Rho as a BIMEs-dependent global regulator of gene expression. By mutational analyses, we identified nucleotide determinants of BIMEs that are required for attenuation and showed that this process relies on a sequence-specific mechanism. Our data are consistent with a model in which BIMEs provoke a pause in RNA polymerase movement and Rho acts ultimately to terminate transcription. BIME-dependent transcription attenuation may be used as a means to differentially regulate expression of adjacent genes belonging to a single operon. BIMEs are dispersed in more than 250 operons such that attenuation can simultaneously affect expression of a large number of genes encoding unrelated proteins. This attenuation phenomenon, together with the known ability of BIMEs to stabilize upstream mRNA, reveals how dispersion of these abundant repetitive elements may affect gene regulation at the genome level.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmbi.2001.5150DOI Listing

Publication Analysis

Top Keywords

transcription attenuation
20
transcription
8
repetitive extragenic
8
elements transcription
8
attenuation
8
transcription termination
8
gene expression
8
required attenuation
8
bimes
6
attenuation associated
4

Similar Publications

Background: Both oxidative stress and autoimmune responses play crucial roles in the development of vitiligo. Under oxidative stress, the apoptotic melanocytes expose self-antigens and release high mobility group box 1 (HMGB1), triggering autoimmune activation and recruiting CD8 T cells. This process further leads to the destruction of melanocytes, resulting in the lack of melanin granules.

View Article and Find Full Text PDF

circLOC375190 promotes autophagy through modulation of the mTORC1/TFEB axis in acute ischemic stroke-induced neurological injury.

Clinics (Sao Paulo)

January 2025

Department of Neurology, Daqing Oilfield General Hospital, Daqing City, Heilongjiang Province, China. Electronic address:

Objective: The authors explored differentially expressed circRNAs in Acute Ischemic Stroke (AIS) and revealed the role and potential downstream molecular mechanisms of circLOC375190.

Methods: circLOC375190 expression was modulated by lentiviral injection in the brain of transient Middle Cerebral Artery Occlusion (tMCAO) mice. Neurological dysfunction was assessed, as well as infarction size, histopathological changes, and neuronal apoptosis in tMCAO mice.

View Article and Find Full Text PDF

CBX2 suppresses interferon signaling to diminish tumor immunogenicity via a noncanonical corepressor complex.

Proc Natl Acad Sci U S A

February 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China.

Chromobox 2 (CBX2), a crucial component of the polycomb repressive complex (PRC), has been implicated in the development of various human cancers. However, its role in the regulation of tumor immunogenicity and immune evasion remains inadequately understood. In this study, we found that ablation of CBX2 led to tumor growth inhibition, activation of the tumor immune microenvironment, and enhanced therapeutic efficacy of anti-PD1 or adoptive T cell therapies by using murine syngeneic tumor models.

View Article and Find Full Text PDF

Partially hydrolyzed guar gum alleviates neurological deficits and gastrointestinal dysfunction in mice with traumatic brain injury.

Neurosurg Rev

January 2025

Department of Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Zhou shan hui shui Community,199 Hailing South Road, Taizhou, Jiangsu Province, 225300, China.

Traumatic brain injury (TBI)-associated neuroinflammation and neurotoxicity can induce gastrointestinal dysfunction through the brain-gut axis. Partially hydrolyzed guar gum (PHGG) was demonstrated to exert beneficial health effects by altering gut microbiota and short-chain fatty acids (SCFAs) production. Our study aimed to explore the effects of PHGG on gastrointestinal dysfunction in TBI mouse models.

View Article and Find Full Text PDF

The opportunistic pathogen sp. ATCC 39006 (S39006) is a rod-shaped, motile, Gram-negative bacterium that produces a 𝛽-lactam antibiotic (a carbapenem) and a bioactive red-pigmented tripyrrole antibiotic, prodigiosin. It is also the only known enterobacterium that naturally produces intracellular gas vesicles (GVs), enabling cells to float in static water columns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!