In Brazil more than 90% of the population are not connected to municipal wastewater treatment plants. As a consequence, surface waters receive continuously considerable amounts of untreated domestic sewage containing surfactants as a major constituent. Such polluted waters gave rise to special interest if they are used as a source for the production of drinking water. In this work, the river Rio Macacu (State Rio de Janeiro, Brazil) was monitored for the occurrence of the most widely used anionic surfactant linear alkylbenzene sulfonate (LAS) together with its main degradative product, sulfophenyl carboxylates (SPC). In order to pursue the fate of both compounds after emission into the river, samples were collected at several locations along the river bank, and analyzed applying liquid chromatography-mass spectrometry after enrichment by solid-phase extraction. The LAS concentrations ranged between 14 and 155 microg l(-1) and the levels of their metabolic intermediates were found from 1.2 to 14 microg l(-1). The self-purification capacity of the water was impressively demonstrated in the upper course of the river downstream of a town considered as one major discharge point, whereas in the lower course the relative constant concentrations of both analytes were detected which was explained with an overall increasing level of pollution. Furthermore, a series of drinking water samples from Niterói and São Gonçalo, supplied by the same waterworks treating surface waters from the Rio Macacu, were taken during two sampling periods and examined for the presence of the strongly polar SPC which is suspected of by-passing the purification processes. The levels detected in the drinking water ranged between 1.6 and 3.3 microg l(-1). For the analyses of drinking and surface waters the peak pattern of a selected SPC homologue composed by several positional isomers served as an indicator to describe the progression of SPC degradation occurred in the river and could be used to distinguish drinking waters of different origins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0048-9697(01)00873-7 | DOI Listing |
Chem Sci
January 2025
School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University Chongqing 401331 China
Atomically precise gold nanoclusters have shown great promise as model electrocatalysts in pivotal electrocatalytic processes such as the hydrogen evolution reaction (HER) and carbon dioxide reduction reaction (CORR). Although the influence of ligands on the electronic properties of these nanoclusters is well acknowledged, the ligand effects on their electrocatalytic performances have been rarely explored. Herein, using [Au(SR)] nanoclusters as a prototype model, we demonstrated the importance of ligand hydrophilicity hydrophobicity in modulating the interface dynamics and electrocatalytic performance.
View Article and Find Full Text PDFThe increasing demand for sustainable food packaging has driven the development of films based on biopolymers. However, enhancing their functional properties remains a challenge. In the current study, potato starch-pectin (PSP) composite films were fabricated and enriched with juniper berry essential oil (JBEO) to improve their physicochemical properties.
View Article and Find Full Text PDFJ Int Soc Prev Community Dent
December 2024
Department of Pediatric Dentistry, Faculty of Dentistry, Mahidol University, Bangkok, Thailand.
Aims: This study aimed to evaluate the enamel remineralization effect of fluoride-incorporated bioactive glass (F-BG) toothpaste on artificial subsurface caries in primary teeth.
Materials And Methods: Forty sound primary maxillary incisors were subjected to a demineralizing solution for four days to induce artificial enamel caries. The teeth were randomly divided into four experimental groups ( = 10 per group): Group I, F-BG toothpaste (530 ppm fluoride) (BiominF); Group II, 0.
J Food Sci Technol
January 2025
Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato 80, 6121, Campinas, SP 3083-862 Brazil.
Unlabelled: The effects of high hydrostatic pressure (HHP) (400-650 MPa) and holding temperature (25-50 °C) in thermally assisted HHP processing on multi-scale structure of starch (granule, crystalline and molecular), techno-functional properties, and digestibility of sorghum starch (SS) were evaluated. Response surface methodology has verified that the process impact on the modification of SS was dependent primarily on the pressure level. As HHP increased, processed SS progressively lost their granular structure and Maltese cross, indicating gradual structural disorder within the granules.
View Article and Find Full Text PDFRSC Adv
January 2025
Dipartimento di Scienze e Innovazione Tecnologica, Università Del Piemonte Orientale A. Avogadro Viale T. Michel 11 15121 Alessandria Italy
A novel synthesis of a nanometric MCM-41 from biogenic silica obtained from rice husk is here presented. CTABr and Pluronic F127 surfactants were employed as templating agents to promote the formation of a long-range ordered 2D-hexagonal structure with cylindrical pores and to limit the particle growth at the nanoscale level thus resulting in a material with uniform particle size of 20-30 nm. The physico-chemical properties of this sample (RH-nanoMCM) were investigated through a multi-technique approach, including PXRD, Si MAS NMR, TEM, -potential and N physisorption analysis at 77 K.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!