Repression of gene transcription by nuclear receptors is mediated by interactions with co-repressor proteins such as SMRT and N-CoR, which in turn recruit histone deacetylases to the chromatin. Aberrant interactions between nuclear receptors and co-repressors contribute towards acute promyelocytic leukaemia and thyroid hormone resistance syndrome. The binding of co-repressors to nuclear receptors occurs in the unliganded state, and can be stabilized by antagonists. Here we report the crystal structure of a ternary complex containing the peroxisome proliferator-activated receptor-alpha ligand-binding domain bound to the antagonist GW6471 and a SMRT co-repressor motif. In this structure, the co-repressor motif adopts a three-turn alpha-helix that prevents the carboxy-terminal activation helix (AF-2) of the receptor from assuming the active conformation. Binding of the co-repressor motif is further reinforced by the antagonist, which blocks the AF-2 helix from adopting the active position. Biochemical analyses and structure-based mutagenesis indicate that this mode of co-repressor binding is highly conserved across nuclear receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1038/415813aDOI Listing

Publication Analysis

Top Keywords

nuclear receptors
16
co-repressor motif
12
nuclear
5
co-repressor
5
structural basis
4
basis antagonist-mediated
4
antagonist-mediated recruitment
4
recruitment nuclear
4
nuclear co-repressors
4
co-repressors pparalpha
4

Similar Publications

Progesterone induces meiosis through two obligate co-receptors with PLA2 activity.

Elife

January 2025

Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.

The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality.

View Article and Find Full Text PDF

functional validation of anti-CD19 chimeric antigen receptor T cells expressing lysine-specific demethylase 1 short hairpin RNA for the treatment of diffuse large B cell lymphoma.

Front Immunol

January 2025

Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.

Background: Chimeric antigen receptor T (CAR-T) cell therapy is more effective in relapsed or refractory diffuse large B cell lymphoma (DLBCL) than other therapies, but a high proportion of patients relapse after CAR-T cell therapy owing to antigen escape, limited persistence of CAR-T cells, and immunosuppression in the tumor microenvironment. CAR-T cell exhaustion is a major cause of relapse. Epigenetic modifications can regulate T cell activation, maturation and depletion; they can be applied to reduce T cell depletion, improve infiltration, and promote memory phenotype formation to reduce relapse after CAR-T cell therapy.

View Article and Find Full Text PDF

Objective: Currently, chimeric antigen receptor T-cell (CART) therapy represents a highly effective approach for relapsed/refractory B-cell lymphomas. However, it also carries treatment-related risks. Limited data are available on the risks associated with CART therapy in patients with gastrointestinal involvement in B-cell lymphomas.

View Article and Find Full Text PDF

Background: Cutaneous hypertrophic scar is a fibro-proliferative hard-curing disease. Recent studies have proved that antagonists of angiotensin II type 1 receptor (ATR) and agonists of type 2 receptor (ATR) were able to relieve hypertrophic scar. Therefore, establishing new methods to pursue dual-target lead compounds from Chinese herbs is in much demand for treating scar.

View Article and Find Full Text PDF

Retinoic acid homeostasis and disease.

Curr Top Dev Biol

January 2025

Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States. Electronic address:

Retinoids, particularly all-trans-retinoic acid (ATRA), play crucial roles in various physiological processes, including development, immune response, and reproduction, by regulating gene transcription through nuclear receptors. This review explores the biosynthetic pathways, homeostatic mechanisms, and the significance of retinoid-binding proteins in maintaining ATRA levels. It highlights the intricate balance required for ATRA homeostasis, emphasizing that both excess and deficiency can lead to severe developmental and health consequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!