Background And Aims Of The Study: For implanted Björk-Shiley convexo-concave (BSCC) heart valves, structural failure of the valve's U-shaped outlet strut results in embolization of its blood flow-regulating disc (occluder), with consequent patient morbidity and mortality. After a variable and unpredictable number of cardiac cycles, one strut leg may fatigue ('single-leg separation'; SLS); subsequently the other strut leg may also fatigue, resulting in full structural failure ('outlet strut failure'; OSF). Some BSCC valves are believed to be at more risk of SLS and OSF than others. As valves may function in the SLS condition for some time before OSF occurs, several investigators have sought non-invasive methods to differentiate valves with SLS struts from valves with intact struts in order to provide a rationale for prophylaxis. Herein, we report the use of X-ray microcomputed tomography (micro-CT) to image and characterize SLS strut fractures, including fracture faces otherwise visible only by means of physical sectioning.
Methods: An X-ray micro-CT system was adapted to provide high-resolution, three-dimensional (3D) images of intact and fractured BSCC valve outlet struts in vitro. System modifications included use of a tungsten anode X-ray source to achieve sufficiently high X-ray energies to overcome attenuation within the metal structures, and a hafnium filter to minimize the imaging artifact caused by X-ray beam hardening. For rotating the valve for tomographic scanning, special alignment procedures were developed to maintain the region of interest within the field of view. Typical 3D images of the outlet struts were composed of cubic voxels, 10 microm on a side. Image analysis and display software was used to view the outlet struts and the fractures from several perspectives, including en-face images of fracture surfaces.
Results: 3D volume data representations of the SLS and intact outlet struts were obtained, facilitating identification of fracture location and geometry. Enface images of the fracture surfaces were also generated. Several different fracture geometries were observed, such as fractures with and without longitudinal gaps between the fracture faces, and fractures with and without lateral displacement between the faces. En-face views showed varying degrees of roughness on fracture faces.
Conclusion: This application of micro-CT to image outlet strut fractures in BSCC valve explants demonstrates the value of this method for fracture characterization in vitro, including visualization of fracture faces of SLS struts without physical sectioning. Although the method is not suitable for clinical use because it requires high-intensity X-rays, micro-CT can serve as a tool to understand further any failure mechanisms, and to aid the development of clinical differentiation methods.
Download full-text PDF |
Source |
---|
Cardiol Young
January 2024
Pediatric Cardiology & Intensive Care Medicine, Göttingen University Hospital, Göttingen, Germany.
Background: Stenting of stenotic right ventricular outflow tract is a palliative measure for severely impaired small babies with Tetralogy of Fallot or similar pathologies. Little is known about the histopathological fate of the stents in the right ventricular outflow tract.
Methods: Eight samples of surgically removed right ventricular outflow tract stents were histologically analysed according to a predefined protocol.
Comput Biol Med
December 2021
Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA. Electronic address:
In this work, hemodynamic alterations in a patient-specific, heavily calcified coronary artery following stent deployment and post-dilations are quantified using in silico and ex-vivo approaches. Three-dimensional artery models were reconstructed from OCT images. Stent deployment and post-dilation with various inflation pressures were performed through both the finite element method (FEM) and ex vivo experiments.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
November 2018
Mechanical Engineering Program, Texas A&M University at Qatar, Doha, Qatar. Electronic address:
The effect of hemodynamic load on various stent-graft designs used for endovascular aneurysm repair (EVAR) in cardiovascular treatments is studied using a numerical fluid-structure interaction (FSI) analysis that couples computational fluid dynamics (CFD) and finite element analysis (FEA). Radial displacements, mechanical stresses, wall shear stress and wall compliance quantities are evaluated for four stent materials and one graft material. The strut thickness is varied from 0.
View Article and Find Full Text PDFGen Thorac Cardiovasc Surg
June 2017
Vascular Surgery Department, Fujii Hospital, 3-1 Nishinouchimachi, Kishiwada, Osaka, Japan.
Prosthetic valve fracture is a serious complication and may arise in patient post-valve replacement. We experienced an outlet strut fracture and leaflet escape of a Bjork-Shiley convexo-concave valve. We performed an emergency redo mitral valve replacement and successfully retrieved the fractured strut and escaped leaflet from superficial femoral artery and the abdominal aorta.
View Article and Find Full Text PDFJ Am Chem Soc
February 2016
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
Reaction of a ditopic urea "strut" (L1) with cis-(tmen)Pd(NO3)2 yielded a [3+3] self-assembled molecular triangle (T) [L1 = 1,4-di(4-pyridylureido)benzene; tmen = N,N,N',N'-tetramethylethane-1,2-diamine]. Replacing cis-(tmen)Pd(NO3)2 in the above reaction with an equimolar mixture of Pd(NO3)2 and a clip-type donor (L2) yielded a template-free multicomponent 3D trigonal prism (P) decorated with multiple urea moieties [L2 = 3,3'-(1H-1,2,4-triazole-3,5-diyl)dipyridine]. This prism (P) was characterized by NMR spectroscopy, and the structure was confirmed by X-ray crystallography.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!