Control of gibberellin levels and gene expression during de-etiolation in pea.

Plant Physiol

School of Plant Science, University of Tasmania, G.P.O. Box 252-55, Hobart, Tasmania, 7001, Australia.

Published: February 2002

Gibberellin A(1) (GA(1)) levels drop significantly in wild-type pea (Pisum sativum) plants within 4 h of exposure to red, blue, or far-red light. This response is controlled by phytochrome A (phyA) (and not phyB) and a blue light receptor. GA(8) levels are increased in response to 4 h of red light, whereas the levels of GA(19), GA(20), and GA(29) do not vary substantially. Red light appears to control GA(1) levels by down-regulating the expression of Mendel's LE (PsGA3ox1) gene that controls the conversion of GA(20) to GA(1), and by up-regulating PsGA2ox2, which codes for a GA 2-oxidase that converts GA(1) to GA(8). This occurs within 0.5 to 1 h of exposure to red light. Similar responses occur in blue light. The major GA 20-oxidase gene expressed in shoots, PsGA20ox1, does not show substantial light regulation, but does show up-regulation after 4 h of red light, probably as a result of feedback regulation. Expression of PsGA3ox1 shows a similar feedback response, whereas PsGA2ox2 shows a feed-forward response. These results add to our understanding of how light reduces shoot elongation during de-etiolation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC148934PMC
http://dx.doi.org/10.1104/pp.010607DOI Listing

Publication Analysis

Top Keywords

red light
16
light
9
ga1 levels
8
exposure red
8
blue light
8
levels
5
red
5
control gibberellin
4
gibberellin levels
4
levels gene
4

Similar Publications

This study explores the optoelectronic and photovoltaic potential of acceptor-π-donor (A-π-D) architectures utilizing CSi quantum dots (CSiQDs) through a combination of density functional theory (DFT) and time-dependent DFT (TDDFT). We examined two key structural configurations: C-C and Si-C conformers. In these systems, CSiQDs serve as the acceptor, CHSF as the π-bridge, and 3 × (CHO) as the donor.

View Article and Find Full Text PDF

First-principles study of the effect of Bi content on the photocatalytic performance of bismuth bromide oxide-based catalysts.

Phys Chem Chem Phys

January 2025

Science and Technology on Aerospace Chemical Power Laboratory, Laboratory of Emergency Safety and Rescue Technology, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China.

A comprehensive analysis of BiOBr has been carried out using first-principles density-functional theory (DFT) to explore the electronic structure, energy band structure, and essential properties related to its photocatalytic performance. DFT calculations reveal that BiOBr, BiOBr, BiOBr, BiOBr, BiOBr, and BiOBr have different indirect bandgap values of 2.46 eV, 2.

View Article and Find Full Text PDF

Sages and their beneficial secondary metabolites have been used in conventional and traditional medicine in many countries, and are extensively studied for their health effects. However, to achieve high production levels, it is crucial to optimize the cultivation conditions. The aim of our study was to determine the optimal light-emitting diode (LED) treatment strategy for promoting plant growth and polyphenol biosynthesis in S.

View Article and Find Full Text PDF

The effect of low energy LED red light on osteogenetic differentiation of periodontal ligament stem cell via the ERK5 signal pathway.

Lasers Med Sci

January 2025

The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.

The purpose of this study was to examine how low-energy LED red light influences the early to middle stage of osteogenic differentiation of periodontal ligament stem cells (PDLSCs) via the ERK5 signaling pathway.  METHODS: PDLSCs were extracted from periodontal membrane tissue using enzymatic digestion. At three time points of 7, 10, and 14 days after irradiation with 5J/cm LED red light, the expression levels of early to middle-stage osteogenic-related genes ALP, Col-1, BSP, and OPN were detected by real-time fluorescence quantitative PCR(qRT-PCR) in both control and osteogenesis experimental groups.

View Article and Find Full Text PDF

Solvent-Free Artificial Light-Harvesting System in a Fluid Donor with Highly Efficient Förster Resonance Energy Transfer.

J Phys Chem Lett

January 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.

Multi-step Förster resonance energy transfer (FRET) plays a vital role in photosynthesis. While the energy transfer efficiency (Φ) of a naturally occurring system can reach 95%, that of most artificial light-harvesting systems (ALHSs) is still limited. Herein, we propose a strategy to construct highly efficient ALHSs using a blue-emitting, supercooled ionic compound of naphthalimide (NPI) as the donor, a green-emitting BODIPY derivate as a relay acceptor, and a commercially available, red-emitting dye [rhodamine B (RhB)] as the final acceptor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!