Seed oils of a number of Asteraceae and Euphorbiaceae species are enriched in 12-epoxyoctadeca-cis-9-enoic acid (vernolic acid), an unusual 18-carbon Delta(12)-epoxy fatty acid with potential industrial value. It has been previously demonstrated that the epoxy group of vernolic acid is synthesized by the activity of a Delta(12)-oleic acid desaturase-like enzyme in seeds of the Asteraceae Crepis palaestina and Vernonia galamensis. In contrast, results from metabolic studies have suggested the involvement of a cytochrome P450 enzyme in vernolic acid synthesis in seeds of the Euphorbiaceae species Euphorbia lagascae. To clarify the biosynthetic origin of vernolic acid in E. lagascae seed, an expressed sequence tag analysis was conducted. Among 1,006 randomly sequenced cDNAs from developing E. lagascae seeds, two identical expressed sequence tags were identified that encode a cytochrome P450 enzyme classified as CYP726A1. Consistent with the seed-specific occurrence of vernolic acid in E. lagascae, mRNA corresponding to the CYP726A1 gene was abundant in developing seeds, but was not detected in leaves. In addition, expression of the E. lagascae CYP726A1 cDNA in Saccharomyces cerevisiae was accompanied by production of vernolic acid in cultures supplied with linoleic acid and an epoxy fatty acid tentatively identified as 12-epoxyoctadeca-9,15-dienoic acid (12-epoxy-18:2Delta(9,15)) in cultures supplied with alpha-linolenic acid. Consistent with this, expression of CYP726A1 in transgenic tobacco (Nicotiana tabacum) callus or somatic soybean (Glycine max) embryos resulted in the accumulation of vernolic acid and 12-epoxy-18:2Delta(9,15). Overall, these results conclusively demonstrate that Asteraceae species and the Euphorbiaceae E. lagascae have evolved structurally unrelated enzymes to generate the Delta(12)-epoxy group of vernolic acid.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC148923 | PMC |
http://dx.doi.org/10.1104/pp.010768 | DOI Listing |
Heliyon
April 2024
Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada.
Spreng is a promising emerging oilseed crop, with its seed oil accounting for approximately 50% of the seed weight. oil contains a significant amount of vernolic acid, comprising two-thirds of its composition, which boasts various industrial applications, including acting as a stabilizer-plasticizer and natural dye. However, this species was known to have a high degree of seed-shattering and a low germination rate, which act as two important barriers to large-scale production and exploitation.
View Article and Find Full Text PDFPlant Methods
January 2024
Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada.
Background: The potential of plant-based sources of vernolic acid to provide agricultural producers with a market diversification opportunity and industrial manufacturers with a renewable, environmentally friendly chemical feedstock is immense. The herbaceous wild spurge or caper spurge (Euphorbia lagascae Spreng) is the most promising source of vernolic acid, containing an average oil content of 50%, of which around 60% is vernolic acid. Its seed yield ranges between 500 and 2000 kg ha, and a theoretical yield of 180 kg ha of pure vernolic acid is possible.
View Article and Find Full Text PDFInt J Nanomedicine
May 2023
Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
Introduction: Biogenic silver nanoparticles (AgNPs) may be a feasible therapeutic option in the research and development towards selectively targeting specific cancers and microbial infections, lending a role in precision medicine. In-silico methods are a viable strategy to aid in drug discovery by identifying lead plant bioactive molecules for further wet lab and animal experiments.
Methods: Green synthesis of M-AgNPs was performed using the aqueous extract from the leaves, characterized using UV spectroscopy, FTIR, TEM, DLS, and EDS.
Biotechnol Biofuels Bioprod
February 2022
Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, Jinzhong, China.
Background: Vernonia galamensis native to Africa is an annual oleaginous plant of Asteraceae family. As a newly established industrial oil crop, this plant produces high level (> 70%) of vernolic acid (cis-12-epoxyoctadeca-cis-9-enoic acid), which is an unusual epoxy fatty acid (EFA) with multiple industrial applications. Here, transcriptome analysis and fatty acid profiling from developing V.
View Article and Find Full Text PDFSci Rep
November 2020
Department of Plant Medicals, Andong National University, Andong, 37629, South Korea.
Epoxyoctadecamonoenoic acids (EpOMEs) are epoxide derivatives of linoleic acid (9,12-octadecadienoic acid) and include 9,10-EpOME and 12,13-EpOME. They are synthesized by cytochrome P450 monooxygenases (CYPs) and degraded by soluble epoxide hydrolase (sEH). Although EpOMEs are well known to play crucial roles in mediating various physiological processes in mammals, their role is not well understood in insects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!