To elucidate the mechanism of an irradiance-dependent adjustment in the chlorophyll (Chl) antenna size of Dunaliella salina, we investigated the regulation of expression of the Chl a oxygenase (CAO) and light-harvesting complex b (Lhcb) genes as a function of Chl availability in the photosynthetic apparatus. After a high-light to low-light shift of the cultures, levels of both CAO and Lhcb transcripts were rapidly induced by about 6-fold and reached a high steady-state level within 1.5 h of the shift. This was accompanied by repair of photodamaged photosystem II (PSII) reaction centers, accumulation of Chl a and Chl b (4:1 ratio), photosystem I (PSI), light-harvesting complex, and by enlargement of the Chl antenna size of both photosystems. In gabaculine-treated cells, induction of CAO and Lhcb transcripts was not affected despite substantial inhibition in de novo Chl biosynthesis. However, cells were able to synthesize and accumulate some Chl a and Chl b (1:1 ratio), resulting in a marked lowering of the Chl a to Chl b ratio in the presence of this inhibitor. Assembly incorporation of light-harvesting complex and a corresponding Chl antenna size increase, mostly for the existing photosystems, was noted in the presence of gabaculine. Repair of photodamaged PSII was not affected by gabaculine. However, assembly accumulation of new PSI was limited under such conditions. These results suggest a coordinate regulation of CAO and Lhcb gene transcription by irradiance, independent of Chl availability. The results are discussed in terms of different signal transduction pathways for the regulation of the photosynthetic apparatus organization by irradiance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC148922PMC
http://dx.doi.org/10.1104/pp.010595DOI Listing

Publication Analysis

Top Keywords

chl
13
chl antenna
12
antenna size
12
light-harvesting complex
12
cao lhcb
12
chl chl
12
chl ratio
12
dunaliella salina
8
chl availability
8
photosynthetic apparatus
8

Similar Publications

Computational new approach methods guide focused testing and enhance understanding of chlorantraniliprole toxicity across species.

Environ Toxicol Chem

January 2025

Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, MN, United States.

Diamide insecticides, specifically chlorantraniliprole (CHL), have been rising in popularity over the past decade, becoming one of the most widely used insecticide classes globally. These insecticides target the ryanodine receptor (RyR), primarily for control of lepidopteran agricultural pests. Field studies have revealed that some lepidopteran species have developed mutations where a methionine in a particular position (e.

View Article and Find Full Text PDF

Unraveling the interaction of dissolved organic matter and microorganisms with internal phosphorus cycling in the floodplain lake ecosystem.

Environ Res

January 2025

College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China. Electronic address:

Internal nutrient cycling, especially phosphorus (P), is of great influence in lake eutrophication. Dissolved organic matter (DOM) and microorganisms are ubiquitous in the sediments and closely associated with P-cycling. However, the underlying interactions of DOM, microorganisms and P in floodplain lake area with different hydrological characteristics remain scarce.

View Article and Find Full Text PDF

Background: Increasing the diversity of lead compounds has been shown to enhance the efficacy of diamide insecticides. Fifty novel compounds were precisely designed and synthesized utilizing fragment-based assembly and virtual screening coupling.

Results: The median lethal concentration (LC) values of compounds X-30 and X-40 against Mythimna separata were 0.

View Article and Find Full Text PDF

Activated PI3K delta syndrome (APDS) is a primary immunodeficiency that is caused by mutations in the PI3K signalling pathway resulting in either gain-of-function or loss-of-function phenotypes of APDS 1 and 2. Malignancy is one of the most serious complications associated with APDS patients, with the most commonly occurring of these being lymphoma, and is the most common cause of death in APDS patients. Management of APDS is complex and variable due to the heterogeneous nature of the disease and ranges from antimicrobial and immunosuppressant agents to haematopoetic stem cell transplantation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!