O(2) transport and O(2) diffusion interact in providing O(2) to tissue, but the extent to which diffusion may be critical in the heart is unclear. If O(2) diffusion limits mitochondrial oxygenation, a change in blood O(2) affinity at constant total O(2) transport should alter cardiac O(2) consumption (VO(2)) and function. To test this hypothesis, we perfused isolated isovolumically working rabbit hearts with erythrocytes at physiological blood-gas values and P(50) (PO(2) required to half-saturate hemoglobin) values at pH of 7.4 of 17 +/- 1 Torr (2,3-bisphosphoglycerate depletion) and 33 +/- 5 Torr (inositol hexaphosphate incorporation). When perfused at 40 and 20% of normal coronary flow, mean VO(2) decreased from the control value by 37 and 46% (P < 0.001), and function, expressed as cardiac work, decreased by 38 and 52%, respectively (P < 0.001). Perfusion at higher P(50) during low-flow ischemia improved VO(2) by 20% (P < 0.001) and function by 36% (P < 0.02). There was also modest improvement at basal flow (P < 0.02 and P < 0.002, respectively). The improvement in VO(2) and function due to the P(50) increase demonstrates the importance of O(2) diffusion in this cardiac ischemia model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.00194.2001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!