Proteinase-activated receptor 2 belongs to a new G protein-coupled receptor subfamily activated by various serine proteases. It has been demonstrated to play a role during inflammation of many tissues including the skin. Proteinase-activated receptor 2 is expressed by endothelial cells and regulates cutaneous inflammation in vivo. The underlying mechanisms of proteinase-activated receptor 2 activation in the skin and the effects on human dermal microvascular endothelial cells, however, are still unknown. Agonists of proteinase-activated receptor 2 such as mast cell tryptase induce widespread inflammation in many organs including the skin. Trypsinogen is generated by endothelial cells during inflammation or tumor growth. Therefore we tested whether human dermal microvascular endothelial cells express functional proteinase-activated receptor 2 and whether agonists of proteinase-activated receptor 2 regulate inflammatory responses in these cells. Calcium mobilization studies revealed that proteinase-activated receptor 2 is functional in human dermal microvascular endothelial cells. Interleukin-6 and interleukin-8 were upregulated as detected by reverse transcription polymerase chain reaction or enzyme-linked immunosorbent assay indicating a role of proteinase-activated receptor 2 in stimulating human dermal microvascular endothelial cells. Electromobility shift assays revealed proteinase-activated-receptor-2-induced activation of nuclear transcription factor kappaB with a maximum after 1 h. In conclusion, agonists of proteinase-activated receptor 2 upregulate interleukin-6 and interleukin-8 expression and release in human dermal microvascular endothelial cells. Thus, proteinase-activated receptor 2 may play an important role in cutaneous inflammation by mediating inflammatory responses on dermal microvascular endothelial cells and activation of nuclear transcription factor kappaB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.0022-202x.2001.01658.x | DOI Listing |
Adv Sci (Weinh)
December 2024
Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
Parkinson's disease (PD) is characterized by the deposition of misfolded α-synuclein (α-syn) in the brain. Converging evidence indicates that the intracellular transmission and subsequent templated amplification of α-syn are involved in the onset and progression of PD. However, the molecular mechanisms underlying the cell-to-cell transmission of pathological α-syn remain poorly understood.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Biotechnology, Bharathiar University, Coimbatore, India. Electronic address:
Tissue factor (TF) and protease-activated receptor 2 (PAR2) have been associated with the progression of cancer, while integrins are essential for the adhesion and migration of cancer cells. This study aimed to explore the cross-talk between the TF:FVIIa complex, PAR2 signaling, and the expression of integrin α1 in cervical cancer cells. Utilizing data from The Cancer Genome Atlas (TCGA), the research examined the relationship between the TF and PAR2 genes and the integrin α1 gene (ITGA1) in reproductive cancers, revealing a positive correlation between integrin α1 expression and both TF and PAR2 genes.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Nephropathology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
Aims: Activation of Protease Activated Receptor 2 (PAR2) has been shown to be involved in regulation of injury-related processes including inflammation, fibrosis and hypertrophy. In this study we will investigate the role of PAR2 in cardiac injury in a mouse model of hypertension using continuous infusion with angiotensin II.
Methods: Hypertension was induced in 12 weeks old wildtype (wt, n = 8) and PAR2 deficient mice (n = 9) by continuous infusion with angiotensin II for 4 weeks using osmotic minipumps.
Sci Rep
November 2024
Department of Chest Medicine, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Road., Beitou District, 11217, Taipei City, Taiwan, ROC.
House dust mites (HDM) are common aeroallergens linked to airway inflammation and remodeling in asthma. Protease-activated receptor 2 (PAR2) and thymic stromal lymphopoietin (TSLP) may mediate these immune responses. However, how the epithelium influences fibroblasts toward airway remodeling remains unclear.
View Article and Find Full Text PDFExp Neurol
February 2025
Department of Neurosurgery, the Third Affiliated Hospital, Sun Yat-Sen University, 600 Tian He Road, Tian He District, Guangzhou, Guangdong 510630, China. Electronic address:
Objective: Peripheral nerve injury (PNI) is characterized by high incidence and sequela rate. Recently, there was increasing evidence that has shown ferroptosis may impede functional recovery. Our objective is to explore the novel mechanism that regulates ferroptosis after PNI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!