Cloning of Homo sapiens? No!

Differentiation

Department of Genetics, Cell Biology and Development, University of Minnesota, Saint Paul, MN 55108-1095, USA.

Published: January 2002

Animal cloning by nuclear transplantation was first developed in the northern leopard frog, Rana pipiens. It was soon extended to other amphibian species and within time, to various mammalian species. The production of a cloned sheep (Dolly) from an adult nuclear donor reawakened interest in human cloning. Nuclear transfer for the production of animal clones has served experimental biology well. Nonetheless, the potential burden of developmental hazards, scientists and funds diverted from more needy causes, as well as the potential assault on the concept of family has led the author to oppose human cloning.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1432-0436.2002.690403.xDOI Listing

Publication Analysis

Top Keywords

cloning nuclear
8
human cloning
8
well potential
8
cloning
4
cloning homo
4
homo sapiens?
4
sapiens? no!
4
no! animal
4
animal cloning
4
nuclear transplantation
4

Similar Publications

The maize mTERF18 regulates transcriptional termination of the mitochondrial nad6 gene and is essential for kernel development.

J Genet Genomics

January 2025

National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China. Electronic address:

Mitochondria are semi-autonomous organelle present in eukaryotic cells, containing their own genome and transcriptional machinery. However, their functions are intricately linked to proteins encoded by the nuclear genome. Mitochondrial transcription termination factors (mTERFs) are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts.

View Article and Find Full Text PDF

Parainfluenza virus type 5 (PIV5) can cause either persistent or acute/lytic infections in a wide range of mammalian tissue culture cells. Here, we have generated PIV5 fusion (F)-expressing helper cell lines that support the replication of F-deleted viruses. As proof of the principle that F-deleted single-cycle infectious viruses can be used as safe and efficient expression vectors, we have cloned and expressed a humanized (Hu) version of the mouse anti-V5 tag antibody (clone SV5-Pk1).

View Article and Find Full Text PDF

Advancing nuclear transfer cloning in zebrafish (Danio rerio) into a translational pathway using interdisciplinary tools.

PLoS One

January 2025

Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, United States of America.

The Zebrafish International Resource Center (ZIRC) is an NIH-funded national stock center and germplasm repository that maintains and distributes genetically modified and wild-type zebrafish (Danio rerio) lines to the biomedical research community. The ZIRC and its community would benefit from incorporating somatic cell nuclear transfer (SCNT) cloning which would allow the preservation of diploid genomes. The goal of this study was to advance a zebrafish SCNT cloning protocol into a reproducible community-level pathway by use of process mapping and simulation modeling approaches to address training requirements, process constraints, and quality management gaps.

View Article and Find Full Text PDF

Detection of Hepatitis C Virus Infection from Patient Sera in Cell Culture Using Semi-Automated Image Analysis.

Viruses

November 2024

Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, 69120 Heidelberg, Germany.

The study of hepatitis C virus (HCV) replication in cell culture is mainly based on cloned viral isolates requiring adaptation for efficient replication in Huh7 hepatoma cells. The analysis of wild-type (WT) isolates was enabled by the expression of SEC14L2 and by inhibitors targeting deleterious host factors. Here, we aimed to optimize cell culture models to allow infection with HCV from patient sera.

View Article and Find Full Text PDF

Unlabelled: The With No lysine (WNK) kinases regulate processes such as cell volume and epithelial ion transport through the modulation of Cation Chloride Cotransporters such as the NaCl cotransporter, NCC, present in the distal convoluted tubule (DCT) of the kidney. Recently, the interaction of WNKs with Nuclear Receptor Binding Protein 1 (NRBP1) and Transforming Growth Factor β-Stimulated Clone 22 Domain (TSC22D) proteins was reported. Here we explored the effect of NRBP1 and TSC22Ds on WNK signaling in vitro and in the DCT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!