The first quaternary plutonium metal thiophosphates have been synthesized by the reactive flux method and characterized by single-crystal X-ray diffraction: K(3)Pu(PS(4))(2) (I), KPuP(2)S(7) (II), RbPuP(2)S(7) (III), and CsPuP(2)S(7) (IV). All four compounds crystallize in the monoclinic space group P2(1)/c with Z = 4. Compound I has cell parameters of a = 9.157(1) A, b = 16.866(2) A, c = 9.538(1), and beta = 90.610(3)degrees. Compound II has cell parameters of a = 9.641(1) A, b = 12.255(1) A, c = 9.015(1) A, and beta = 90.218(1)degrees. Compound III has cell parameters of a = 9.8011(6) A, b = 12.3977(7) A, c = 9.0263(5) A, and beta = 90.564(1)degrees. Compound IV has cell parameters of a = 10.1034(7) A, b = 12.5412(9) A, c = 9.0306(6) A, and beta = 91.007(1)degrees. Compound I is isostructural to a family of rare-earth metal thiophosphates and comprises bicapped trigonal prismatic PuS(8) polyhedra linked in chains through edge-sharing interactions and through thiophosphate tetrahedra. Compounds II-IV crystallize in a known structure type not related to any previously observed actinide thiophosphates and contain the (P(2)S(7))(4-) corner-shared bitetrahedral ligand as a structural building block. A summary of important bond distances and angles for these new plutonium thiophosphate materials is compared to the limited literature on plutonium solid-state compounds. Diffuse reflectance spectra confirm the Pu(III) oxidation state and Raman spectroscopy confirms the tetrahedral PS(4)(3-) building block in all structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0108133 | DOI Listing |
Parkinsons disease (PD) is considered one of the most frequent neurological diseases in the world. There is a need to study the early and efficient biomarkers of Parkinsons, such as changes in structural disorders like DNA and chromatin, especially at the subcellular level in the human brain. We used two techniques, Partial wave spectroscopy (PWS) and Inverse Participation Ratio (IPR), to detect the changes in structural disorder in the human brain tissue samples.
View Article and Find Full Text PDFCureus
December 2024
General Surgery, Sri Devaraj Urs Medical College, Kolar, IND.
Introduction Acute appendicitis is a common surgical emergency that requires a timely and accurate diagnosis to prevent complications. Several laboratory markers have been assessed to improve the diagnostic accuracy of acute appendicitis, including C-reactive protein (CRP), white blood cell (WBC) count, and cytokines like interleukins and tumor necrosis factor-alpha. One less commonly used but potentially valuable marker is the mean platelet volume (MPV), which indicates the size of circulating platelets and has the potential to serve as a biomarker for inflammatory conditions.
View Article and Find Full Text PDFUnlabelled: Eastern equine encephalitis virus (EEEV) is an arthropod-borne, positive-sense RNA alphavirus posing a substantial threat to public health. Unlike similar viruses such as SARS-CoV-2, EEEV replicates efficiently in neurons, producing progeny viral particles as soon as 3-4 hours post-infection. EEEV infection, which can cause severe encephalitis with a human mortality rate surpassing 30%, has no licensed, targeted therapies, leaving patients to rely on supportive care.
View Article and Find Full Text PDFMHC-I proteins present epitopic peptides to CD8+ T cells to elicit multifaceted adaptive immune responses. The affinity and avidity of interactions between peptide-MHC molecules and T-cell receptors (TCR) are fundamental parameters that contribute to the induction of activated or anergic T cell states. Here, we present a loadable system, VLP-Open HLA, featuring a virus-like particle (VLP) that can accommodate up to 60 loadable HLA (HLA - human leukocyte antigen) molecules.
View Article and Find Full Text PDFBiomolecular condensates are a ubiquitous component of cells, known for their ability to selectively partition and compartmentalize biomolecules without the need for a lipid membrane. Nevertheless, condensates have been shown to interact with lipid membranes in diverse biological processes, such as autophagy and T-cell activation. Since many condensates are known to have a net surface charge density and associated electric potential(s), we hypothesized that they can induce a local membrane potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!