Both diastereomeric 4-butylspiropentylcarbinyl bromides (14a and 14b) were synthesized in seven steps starting from 1-heptyne, and the stereochemical assignments based upon NOE experiments were confirmed by converting their immediate alcohol precursors (13a and 13b) to 1,4-dibutylspiropentanes (17a and 17b) with C(1) and C(2) symmetry. Each bromide was used to generate its corresponding spiropentylcarbinyl radical (18a and 18b) via its AIBN-initiated tri-n-butyltin hydride reduction. The radical-trapped products are identified, the preferred ring scission mode is identified (C1[bond] C2 bond cleavage), and the estimated rates for the ring opening of 4-butylspiropentylcarbinyl radical (18, k(25) degrees C > or = approximately 5 x 10(9) s(-1)) and 2-butyl-1-vinylcyclopropylcarbinyl radical (33, k(25) degrees C approximately 5 x 10(8) s(-1)) are reported. High-level ab initio calculations addressing the ring-opening isomerizations of cyclopropylcarbinyl and spiropentylcarbinyl radicals also are presented. These results in conjunction with a previous study enable us to propose two structures for the enzyme-catalyzed FAD adducts resulting from spiropentylacetic acid-CoA, a synthetic byproduct of fatty acid metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0114862DOI Listing

Publication Analysis

Top Keywords

ring scission
8
diastereomeric 4-butylspiropentylcarbinyl
8
enzyme-catalyzed fad
8
fad adducts
8
radical k25
8
k25 degrees
8
scission diastereomeric
4
4-butylspiropentylcarbinyl radicals
4
radicals chemical
4
chemical model
4

Similar Publications

Macrocycles represent one important class of functional molecules, and dynamic macrocycles with the potential of cleavability, adaptability, and topological conversion are challenging. Herein we report photoswitchable allosteric and topological control of dynamic covalent macrocycles and further the use in guest binding and mechanically interlocked molecules. The manipulation of competing ring-chain equilibria and bond formation/scission within reaction systems enabled light-induced structural regulation over dithioacetal and thioacetal dynamic bonds, accordingly realizing bidirectional switching between crown ether-like covalent macrocycles and their linear counterparts.

View Article and Find Full Text PDF

Novel energetic materials (EM) often combine two intrinsically counter trends, , a high energy density and mediocre safety parameters, like thermal stability and sensitivity toward mechanical stimuli. A rational design of promising EMs requires a proper understanding of their thermal stability at both macroscopic and molecular levels. In the present contribution, we studied in detail the thermal stability of 4,4'-dinitro-3,3'-diazenofuroxan (DDF), an ultrahigh-performance energetic material with a reliable experimental detonation velocity being very close to 10 km s.

View Article and Find Full Text PDF

Selective monodeuteration enabled by bisphosphonium catalyzed ring opening processes.

Nat Commun

October 2024

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China.

The selective incorporation of a deuterium atom into small molecules with high selectivity is highly valuable for medical and chemical research. Unfortunately, this remains challenging due to the complete deuteration caused by commonly used hydrogen isotope exchange strategies. We report the development of a photocatalytic selective monodeuteration protocol utilizing C-C bond as the unconventional functional handle.

View Article and Find Full Text PDF

ConspectusChemists have long pursued harnessing light energy and photoexcitation processes for synthetic transformations. Ligand-to-metal charge transfer (LMCT) in high-valent metal complexes often triggers bond homolysis, generating oxidized ligand-centered radicals and reduced metal centers. While photoinduced oxidative activations can be enabled, this process, typically seen as photochemical decomposition, remains underexplored in catalytic applications.

View Article and Find Full Text PDF

Vertically-stacked W/WC heterojunctions with high electrocatalytic capability for the hydrogen evolution reaction in a wide pH range.

J Colloid Interface Sci

January 2025

State Key Laboratory of Organic-Inorganic Composites; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, China; State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Key Laboratory of Advanced Fibers and Energy Storage; School of Material Science and Engineering, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin 300387, China. Electronic address:

The hydrogen evolution reaction (HER) in water splitting is among the foremost methods to produce clean and green hydrogen from renewable sources. The practical use of the HER technology is however hindered by the high price and/or the relatively low efficiency of the currently used catalysts. Herein, we report a heterostructured W/WC electrocatalyst featuring vertically stacked interfaces and embedded in N-doped porous graphitic carbon (denoted as W/WC@N-PGC) as a high-performance electrocatalyst for the HER in a wide pH range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!