Expression of gelatinase B (matrix metalloprotease 9) in human placenta is developmentally regulated, presumably to fulfill a proteolytic function. Here we demonstrate that gelatinolytic activity in situ, in tissue sections of term placenta, is co-localized with gelatinase B. Judging by molecular mass, however, all the enzyme extracted from this tissue was found in a proform. To address this apparent incongruity, we examined the activity of gelatinase B bound to either gelatin- or type IV collagen-coated surfaces. Surprisingly, we found that upon binding, the purified proenzyme acquired activity against both the fluorogenic peptide (7-methoxycoumarin-4-yl)-acetic acid (MCA)-Pro-Leu-Gly-Leu-3-(2,4-dinitrophenyl)-l-2,3-diaminopropionyl-Ala-Arg-NH(2) and gelatin substrates, whereas its propeptide remained intact. These results suggest that although activation of all known matrix metalloproteases in vitro is accomplished by proteolytic processing of the propeptide, other mechanisms, such as binding to a ligand or to a substrate, may lead to a disengagement of the propeptide from the active center of the enzyme, causing its activation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M110931200DOI Listing

Publication Analysis

Top Keywords

substrate binding
4
gelatinase
4
binding gelatinase
4
gelatinase induces
4
induces enzymatic
4
activity
4
enzymatic activity
4
activity presence
4
presence intact
4
propeptide
4

Similar Publications

Substrate expansion of Geotrichum candidum alcohol dehydrogenase towards diaryl ketones by mutation.

Appl Microbiol Biotechnol

December 2024

Department of Life Science and Technology: Tokyo Kogyo Daigaku Seimei Rikogakuin Seimei Rikogakukei, Institute of Science Tokyo, 4259 Nagatsuta-Cho Midzeori-Ku, Yokohama, 226-8501, Japan.

Chiral diaryl alcohols, such as (4-chlorophenyl)(pyridin-2-yl)methanol, are important intermediates for pharmaceutical synthesis. However, using alcohol dehydrogenases (ADHs) in the asymmetric reduction of diaryl ketones to produce the corresponding alcohols is challenging due to steric hindrance in the substrate binding pockets of the enzymes. In this study, the steric hindrance of the ADH from Geotrichum candidum NBRC 4597 (G.

View Article and Find Full Text PDF

Background: Acetyl phosphate (AcP) is a microbial intermediate involved in the central bacterial metabolism. In bacteria, it also functions as a donor of acetyl and phosphoryl groups in the nonenzymatic protein acetylation and signal transduction. In host, AcP was detected as an intermediate of the pyruvate dehydrogenase complex, and its appearance in the blood was considered as an indication of mitochondrial breakdown.

View Article and Find Full Text PDF

Development of Single-Walled Carbon Nanotube-Based Electrodes with Enhanced Dispersion and Electrochemical Properties for Blood Glucose Monitoring.

Biosensors (Basel)

December 2024

Department of Gyedang College of General Education, Sangmyung University, 31 Sangmyungdae-Gil, Dongnam-Gu, Cheonan 31066, Republic of Korea.

The evolution of high-performance electrode materials has significantly impacted the development of real-time monitoring biosensors, emphasizing the need for compatibility with biomaterials and robust electrochemical properties. This work focuses on creating electrode materials utilizing single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), specifically examining their dispersion behavior and electrochemical characteristics. By using ultrasonic waves, we analyzed the dispersion of CNTs in various solvents, including N, N-dimethylformamide (DMF), deionized water (DW), ethanol, and acetone.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) is a powerful optical sensing platform that amplifies the target signals by Raman scattering. Despite SERS enabling a meager detection limit, even at the single-molecule level, SERS also tends to equally enhance unwanted molecules due to the non-specific binding of noise molecules in clinical samples, which complicates its use in complex samples such as bodily fluids, environmental water, or food matrices. To address this, we developed a novel non-fouling biomimetic SERS sensor by self-assembling an anti-adhesive, anti-fouling, and size-selective Lubricin (LUB) coating on gold nanoparticle (AuNP) functionalized glass slide surfaces via a simple drop-casting method.

View Article and Find Full Text PDF

Nitrogenase is the enzyme primarily responsible for reducing atmospheric nitrogen to ammonia. There are three general forms of nitrogenase based on the metal ion present in the cofactor binding site, namely, molybdenum-dependent nitrogenases with the iron-molybdenum cofactor (FeMoco), the vanadium-dependent nitrogenases with FeVco, and the iron-only nitrogenases. It has been shown that the vanadium-dependent nitrogenases tend to have a lesser efficacy in reducing dinitrogen but a higher efficacy in binding and reducing carbon monoxide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!