After alveolar formation, >20% of interstitial lung fibroblasts undergo apoptosis, a process that is of critical importance for normal lung maturation. The immature lung contains two morphologically distinct fibroblast populations, lipid-filled interstitial fibroblasts (LIF) and non-LIF (NLIF), which differ with respect to contractile protein content, proliferative capacity, and expression of mRNAs for fibronectin and types I and III collagen, but not tropoelastin. After alveolarization, apoptosis occurs in only one fibroblast population, the LIF. Using flow cytometry to analyze fibroblasts stained with a lipophilic, fluorescent dye, we identified a subset, designated LIF(-), that contained fewer lipid droplets. Unlike LIF that retain lipid, LIF(+), the LIF(-) do not undergo apoptosis after alveolarization. In LIF(+), apoptosis was correlated with downregulation of insulin-like growth factor I receptor (IGF-IR) mRNA and cell surface protein expression. Treatment with anti-IGF-IR decreased total lung fibroblast survival (P = 0.05) as did treatment with the phosphatidylinositol 3-kinase inhibitor LY-294002 and the ras-raf-mitogen-activated protein kinase inhibitor PD-98059 (P < 0.002), which block IGF-I/insulin receptor survival pathways. These observations implicate downregulation of IGF-IR expression in fibroblast apoptosis after alveolar formation.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00050.2001DOI Listing

Publication Analysis

Top Keywords

insulin-like growth
8
growth factor
8
factor receptor
8
alveolar formation
8
undergo apoptosis
8
fibroblast
5
apoptosis
5
receptor downregulated
4
downregulated alveolarization
4
alveolarization apoptotic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!