Bacterial toxins as tools for mucosal vaccination.

Drug Discov Today

Cardiff University, Center for Drug Delivery/Biology, Welsh School of Pharmacy, Redwood Building, King Edward VII Avenue, Cardiff, UK CF10 3XF.

Published: February 2002

Several studies have demonstrated that the biological properties of secreted bacterial toxins could be harnessed for the induction of mucosal and systemic immunity following application at epithelial surfaces. Although the properties and potential application of several of these toxins will be discussed in this review, special focus will be placed on Pseudomonas aeruginosa exotoxin A (PE). A non-toxic form of PE (ntPE) into which antigenic epitopes can be integrated appears to be a particularly promising vaccination tool, which is able to cross the polarized epithelia of the gastrointestinal, respiratory and reproductive tracts and selectively target macrophages and dendritic cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1359-6446(01)02139-0DOI Listing

Publication Analysis

Top Keywords

bacterial toxins
8
toxins tools
4
tools mucosal
4
mucosal vaccination
4
vaccination studies
4
studies demonstrated
4
demonstrated biological
4
biological properties
4
properties secreted
4
secreted bacterial
4

Similar Publications

Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a severe respiratory disease with high mortality, mainly due to overactivated oxidative stress and subsequent pyroptosis. Mesencephalic astrocyte-derived neurotrophic factor (MANF), an inducible secretory endoplasmic reticulum (ER) stress protein, inhibits lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the exact molecular mechanism remains unclear.

View Article and Find Full Text PDF

is an important opportunistic pathogen often resistant to antibiotics. Specific phages can be useful in eliminating infection caused by . phage vB_KlebPS_265 (KlebP_265) and its host strain were isolated from the sputum of a patient with infection.

View Article and Find Full Text PDF

This study attempted to isolate and identify pedospheric microbes originating in dumpsites and utilized them for the degradation of selected synthetic polymers for the first time in a cost-effective, ecologically favorable and sustainable manner. Specifically, low-density polyethylene (LDPE) and polyurethane (PUR) were converted by the isolated fungi, i.e.

View Article and Find Full Text PDF

Unlabelled: Crohn's disease (CD) is a multifactorial inflammatory bowel disease whose pathogenetic mechanisms are a field of ongoing study. Changes in the intestinal microbiome in CD may influence metabolite production and reflect the disease's severity. We investigate the relationship between trimethylamine N-oxide (TMAO) and lipopolysaccharide-binding protein (LPS) levels and changes in the gut microbiome in patients with CD of various degrees of activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!