Previous study results have demonstrated that cigarette smoke or acetaldehyde rapidly stimulates protein kinase C (PKC)-mediated release of interleukin-8 (IL-8) in bovine bronchial epithelial cells (BECs). Low concentrations of acetaldehyde combine synergistically with malondialdehyde to increase significantly maximal BEC PKC activity at 48 to 96 h stimulation. Because more than 95% of alcoholics are cigarette smokers, we hypothesized that malondialdehyde, an inflammation product of lipid peroxidation, and acetaldehyde, both a product of ethanol metabolism and a component of cigarette smoke, might stimulate PKC-mediated IL-8 release in BECs by malondialdehyde-acetaldehyde (MAA) adduct formation, rather than as free aldehydes. Protein kinase C activity is maximally elevated in BECs treated with 50 microg/ml of BSA-MAA from approximately 1 to 3 h. This activity subsequently begins to decrease by 4 to 6 h, with a return to baseline unstimulated kinase activity levels by 24 h. No activation of cyclic AMP-dependent protein kinase (PKA) or cyclic GMP-dependent protein kinase (PKG) was observed in BSA-MAA-treated BECs. The MAA adduct activation of PKC was followed by a fourfold to tenfold greater release of IL-8 over that observed for both BECs exposed to media only and BSA control-treated BECs. Protein kinase C activation and IL-8 release were blocked by pretreating BECs with 1 microM calphostin C or 100 nM of the PKC alpha-specific inhibitor, Go 6976. Isoform-specific inhibitors to PKC beta, PKC delta, and PKC zeta failed to inhibit completely MAA adduct-stimulated PKC or IL-8 release. Results of these studies indicate that metabolites derived from ethanol and cigarette smoke, such as acetaldehyde and malondialdehyde, form adducts that stimulate airway epithelial cell PKC alpha-mediated release of promigratory cytokines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0741-8329(01)00177-xDOI Listing

Publication Analysis

Top Keywords

protein kinase
24
cigarette smoke
12
il-8 release
12
bovine bronchial
8
bronchial epithelial
8
epithelial cells
8
smoke acetaldehyde
8
pkc
8
maa adduct
8
kinase activity
8

Similar Publications

Targeting p38γ synergistically enhances sorafenib-induced cytotoxicity in hepatocellular carcinoma.

Cell Biol Toxicol

January 2025

Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China.

Sorafenib (Sora) is a first-line treatment for patients with advanced hepatocellular carcinoma (HCC). It can significantly improve the survival rate of patients with advanced HCC, but it is prone to drug resistance during treatment, so the therapeutic effect is extremely limited. Here, we demonstrate that an elevated expression of protein kinase p38γ in hepatocellular carcinoma cells diminishes the tumor cells' sensitivity to Sora.

View Article and Find Full Text PDF

[Molecularly defined renal cell carcinomas].

Pathologie (Heidelb)

January 2025

Institut für Pathologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 8-10, 91054, Erlangen, Deutschland.

Background: The latest edition of the WHO classification of urinary and male genital tumours was published in 2022. The revision was based on the newest scientific literature. This article summarizes the updated recommendations regarding the classification of molecularly defined tumours.

View Article and Find Full Text PDF

Plasma membrane-associated ARAF condensates fuel RAS-related cancer drug resistance.

Nat Chem Biol

January 2025

Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.

RAF protein kinases are major RAS effectors that function by phosphorylating MEK. Although all three RAF isoforms share a conserved RAS binding domain and bind to GTP-loaded RAS, only ARAF uniquely enhances RAS activity. Here we uncovered the molecular basis of ARAF in regulating RAS activation.

View Article and Find Full Text PDF

Alu-Sc-mediated exonization generated a mitochondrial LKB1 gene variant found only in higher order primates.

Sci Rep

January 2025

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore, 138648, Singapore.

The tumor suppressor LKB1/STK11 plays important roles in regulating cellular metabolism and stress responses and its mutations are associated with various cancers. We recently identified a novel exon 1b within intron 1 of human LKB1/STK11, which generates an alternatively spliced, mitochondria-targeting LKB1 isoform important for regulating mitochondrial oxidative stress. Here we examined the formation of this novel exon 1b and uncovered its relatively late emergence during evolution.

View Article and Find Full Text PDF

The role of human epidermal growth factor 2 (HER2) in male breast cancer (MBC) is poorly defined. A comprehensive description of HER2 status was conducted. A total of 6,015 MBC patients from 45 studies and 135 MBC patients with sequencing data were identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!