Gene transfer to salivary glands.

Int Rev Cytol

Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA.

Published: July 2002

AI Article Synopsis

Article Abstract

This article provides a review of the application of gene transfer technology to studies of salivary glands. Salivary glands provide an uncommon target site for gene transfer but offer many experimental situations likely of interest to the cell biologist. The reader is provided with a concise overview of salivary biology, along with a general discussion of the strategies available for gene transfer to any tissue. In particular, adenoviral vectors have been useful for proof of concept studies with salivary glands. Several examples are given, using adenoviral-mediated gene transfer, for addressing both biological and clinical questions. Additionally, benefits and shortcomings affecting the utility of this technology are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0074-7696(02)13013-0DOI Listing

Publication Analysis

Top Keywords

gene transfer
20
salivary glands
16
studies salivary
8
gene
5
salivary
5
transfer salivary
4
glands
4
glands article
4
article review
4
review application
4

Similar Publications

The exterior surface of the human pathogen is coated with a capsular polysaccharide (CPS) that consists of a repeating sequence of 2-5 different sugars that can be modified with various molecular decorations. In the HS:2 serotype from strain NCTC 11168, the repeating unit within the CPS is composed of d-ribose, -acetyl-d-galactosamine, and a d-glucuronic acid that is further amidated with either serinol or ethanolamine. The d-glucuronic acid moiety is also decorated with d-glycero-l-gluco-heptose.

View Article and Find Full Text PDF

Vigna marina (Barm.) Merr. is adapted to tropical marine beaches and has an outstanding tolerance to salt stress.

View Article and Find Full Text PDF

Purpose: Professional bodies currently advise all pregnant individuals undertake confirmatory prenatal diagnostic testing following preimplantation genetic testing for monogenic conditions (PGT-M). We aimed to ascertain the uptake of prenatal diagnostic testing following PGT-M in a large single-centre population.

Methods: This observational linkage study was undertaken using routinely collected outcome data from PGT-M cycles performed at one of Australia's largest PGT-M providers and a statewide dataset of all prenatal samples undergoing cytogenetic analysis in Victoria, Australia, between 2015 and 2022.

View Article and Find Full Text PDF

Colistin- and carbapenem-resistant (ColR CrKp) cause important health problems in pediatric intensive care units (PICUs) due to its ability to harbor multiple resistance genes and spread of high-risk clones. In this study, molecular epidemiological characteristics, transferable resistance genes, and alterations of ColR CrKp isolated from PICU were investigated. Isolates were identified by MALDI-TOF MS, and antimicrobial susceptibility tests were performed using disk diffusion method, gradient strip test, and broth microdilution method.

View Article and Find Full Text PDF

Grazing by zooplankton can regulate bloom-forming cyanobacteria but can also transfer toxin-producing cells, as well as toxic metabolites, to the food web. While laboratory investigations have provided extensive knowledge on zooplankton and toxic cyanobacteria interactions, information on zooplankton feeding on toxin-producing cyanobacteria in natural water bodies remains scarce. In this study, we quantified -specific synthase genes from the gut contents of various cladoceran and copepod taxa to assess the in situ crustacean community and taxon-specific ingestion of potentially toxic in Lake Peipsi, a large eutrophic lake in Estonia, Northern Europe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!