Soil variability in watersheds accounts for the problem of partitioning downstream water quality data and evaluating sources of non-point pollution. This review of previous water quality studies was conducted to examine more closely the influence of soil properties on pollutant export. The approach used in this paper was to start with data from the two largest watersheds (Maumee and Sandusky) and then compare them on a unit area export basis with data from intermediate-size and smaller watersheds. General relationships between pollutant levels at the river mouth and upstream soil conditions are vague and seemingly contradictory at the large-watershed scale. With smaller watersheds, it can be determined that soil texture, slope, and internal drainage are controlling factors for pollutant export. Although Paulding (very-fine, illitic, nonacid, mesic Typic Epiaquept) and Roselms (very-fine, illitic, mesic Aeric Epiaqualf) soils occupy only 5% of the Maumee basin, they generate more than 10 times as much sediment per unit area as the tile-drained Hoytville (fine, illitic, mesic Mollic Epiaqualf) soils that occupy 16% of the Maumee basin. Tile drainage of very poorly drained soils that are formed from either glacial till or silty to sandy lake deposits reduces runoff and increases downward movement of soluble nutrients into tile drains. The assumption that sloping moraine areas are the primary source of pollutants should be reexamined based on this review.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2134/jeq2002.4700 | DOI Listing |
Aust J Rural Health
February 2025
The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia.
Objective: To measure current levels and experiences of food and water security in Walgett to guide a community-led program and to provide a baseline measure.
Design: A community-led cross-sectional survey conducted in April 2022 by trained local researchers.
Setting: Walgett, a regional town in NSW, Australia.
Anal Chim Acta
February 2025
Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, 13084-971, SP, Brazil. Electronic address:
Background: Distinct classes of environmental contaminants - such as microplastics, volatile organic compounds, inorganic gases, hormones, pesticides/herbicides, and heavy metals - have been continuously released into the environment from different sources. Anthropogenic activities with unprecedented consequences have impacted soil, surface waters, and the atmosphere. In this scenario, developing sensing materials and analytical platforms for monitoring water and air quality is essential to supporting worldwide environmental control agencies.
View Article and Find Full Text PDFJ Nutr
January 2025
State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
Cultured meat technology represents an innovative food production approach that enables the large-scale cultivation of animal cells to obtain muscle, fat, and other tissues, which are then processed into meat products. Compared to traditional meat production methods, cell-cultured meat may significantly reduce energy consumption by 7% to 45%, greenhouse gas emissions by 78% to 96%, land use by 99%, and water use by 82% to 96%. This technology offers several advantages, including a shorter production cycle and enhanced environmental sustainability, resource efficiency, and overall sustainability.
View Article and Find Full Text PDFEnviron Res
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Shandong Huatai Paper Co. Ltd., Dongying 257335, China. Electronic address:
Wastewater treatment systems are essential for sustainable water resource management but face challenges such as equipment and sensor malfunctions, fluctuating influent conditions, and operational disturbances that compromise process stability and detection accuracy. To address these challenges, this paper systematically reviews data-driven fault detection and diagnosis (FDD) methods applied in wastewater treatment systems from 2014 to 2024, focusing on their applications, advancements, and limitations. Main contributions include an overview of key treatment processes, a detailed evaluation of fault types (process and sensor faults), advancements in multivariate statistical methods, machine learning (ML), and hybrid FDD techniques, as well as their effectiveness in anomaly detection, managing complex data distributions, and enabling real-time monitoring.
View Article and Find Full Text PDFBioresour Technol
January 2025
School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou Key Laboratory of Water Safety and Water Ecology Technology, Zhengzhou 450001, China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China.
This study integrates partial denitrification/Anammox (PD/A) with hydroxyapatite (HAP) crystallization in a single reactor, achieving simultaneous nitrogen and phosphorus removal along with phosphorus recovery. By adjusting pH, sludge concentration, low COD/TN ratio, and applying moderate dissolved oxygen stress, the system operated stably and promoted the synergistic growth of HAP and biomass. Results showed a nitrogen removal efficiency (NRE) of 94.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!