This work concerns a combined photophysical, photochemical and photobiological study of three drugs (psychotherapeutic agents) of the phenothiazine series: perphenazine, fluphenazine hydrochloride and thioridazine hydrochloride. The excited-state properties were first investigated by stationary and time-resolved fluorimetry and by laser flash photolysis. The spectral description was assisted by quantum-mechanical calculations with the INDO/1-CI method. In organic media the lowest excited singlet state was found to decay by fluorescence (small quantum yield) and mainly by intersystem crossing to the lowest triplet state, which is responsible for oxygen photosensitization (high yields of singlet oxygen production) and photodegradation. A further decay pathway in aqueous solutions was the photoionization process, which led to the formation of the phenothiazine radical cations and the solvated electron. After the preliminary study of the photobehavior in organic solvents and in water, the phototoxicity of the three drugs was investigated on various biological substrates through a series of in vitro assays under UVA irradiation. Photohemolysis of mouse erythrocytes and phototoxicity on cultured murine fibroblasts were observed for all three compounds. Lipid photoperoxidation was then investigated using linoleic acid as the unsaturated lipid model and isolated red blood cell membranes. The drug-induced photodamage was also evaluated on proteins by measuring the photosensitizing cross-linking in erythrocyte ghosts. The combined approach proved to be useful in understanding the mechanism by which these phenothiazine derivatives induce skin photosensitization. In particular, the photophysical properties of the compounds under investigation and the results of the study on their phototoxicity are in agreement with a mechanism that involves the radical cation of the drugs as a main intermediate.

Download full-text PDF

Source
http://dx.doi.org/10.1562/0031-8655(2002)075<0011:espaiv>2.0.co;2DOI Listing

Publication Analysis

Top Keywords

excited-state properties
8
phenothiazine derivatives
8
three drugs
8
properties vitro
4
phototoxicity
4
vitro phototoxicity
4
phototoxicity studies
4
three
4
studies three
4
phenothiazine
4

Similar Publications

Precisely controlling quantum states is relevant in next-generation quantum computing, encryption, and sensing. Chiral organic chromophores host unique light-matter interactions, which allow them to manipulate the quantized circular polarization of photons. Axially chiral organic scaffolds, such as helicenes or twisted acenes, are powerful motifs in chiral light manipulation.

View Article and Find Full Text PDF

Localized surface plasmon resonance (LSPR) metals exhibit remarkable light-absorbing property and unique catalytic activity, attracting significant attention in photocatalysts recently. However, the practical application of plasmonic nanometal is hindered by challenge of energetic electrons extraction and low selectivity. The energetic carriers generated in nanometal under illumination have extremely short lifetimes, leading to rapid energy loss.

View Article and Find Full Text PDF

The potential energy curves, dipole moments and transition dipole moments of the 14 Λ-S states and 30 Ω states of TlBr cation were performed using the multi-reference configuration interaction method. The Davidson correction and spin-orbit coupling effects were also considered. The spectroscopic properties and transition properties of TlBr cation were reported at the first time.

View Article and Find Full Text PDF

Mechanistic insight into multiple effects of copper ion on the photoreactivity of dissolved organic matter.

J Hazard Mater

January 2025

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.

Sunlight irradiation of dissolved organic matter (DOM) in surface water results in the production of photochemically produced reactive intermediates (PPRIs). This process is inevitably influenced by co-existing metal ions in aquatic environments; However, the underlying mechanism remains unclear. In this study, the effect of co-existing copper ion (Cu) on PPRIs produced by irradiation of DOM was systematically investigated, because Cu is a typical redox transient cation and has strong affinity to DOM.

View Article and Find Full Text PDF

Attachment of three different heterocycles with electron donor or acceptor character to a central 1,3,5-triazine core generates readily soluble side-chain free dyes with two displaying soft crystalline mesomorphism and one displaying a nematic liquid crystal phase as confirmed by polarized optical microscopy, calorimetry, gravimetric analysis, and powder X-ray diffraction. Equally intriguing is the dyes' relatively strong electronic communication between donor and acceptor subchromophores that are meta-conjugated to one another, which is experimentally observed as a broad intramolecular charge-transfer absorption that can extend over 100 nm past the most intense absorption event and is computationally confirmed through density functional theory (DFT) evaluations of the molecular ground- and excited-state properties. This molecular design permits the preparation of dyes with panchromatic absorption not just based on the additive absorption of individual subchromophores.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!